Articles | Volume 18, issue 6
https://doi.org/10.5194/amt-18-1471-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1471-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating hourly ground-level aerosols using Geostationary Environment Monitoring Spectrometer aerosol optical depth: a machine learning approach
Sungmin O
Department of Electronic & AI System Engineering, Kangwon National University, Samcheok, Republic of Korea
Ji Won Yoon
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, Republic of Korea
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, Republic of Korea
Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, Republic of Korea
Related authors
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Manal Lam'barki, Wantong Li, Sungmin O, Chunhui Zhan, and Rene Orth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-404, https://doi.org/10.5194/hess-2022-404, 2022
Manuscript not accepted for further review
Short summary
Short summary
We investigate the main drivers of high river flows in near-natural European catchments. While there are a lot of previous research in this area, the understanding of the relative relevance of high flow drivers other than precipitation is understudied. We find that the secondary drivers of high river flows are very diverse and become more relevant for more extreme events. This illustrates the necessity of flood management by considering a multitude of drivers in the context of climate change.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28, https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Short summary
The ensembles in the numerical weather prediction system are under-dispersed near the land surface; therefore, an inflation method is required to increase it. In this study, we perturbed soil temperature and soil moisture to represent the near-surface uncertainty. Perturbations were obtained by the optimization algorithm taking into account diurnal variations in soil states. Consequently, it indirectly inflated the temperature and water vapor mixing ratio in the planetary boundary layer.
Manal Lam'barki, Wantong Li, Sungmin O, Chunhui Zhan, and Rene Orth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-404, https://doi.org/10.5194/hess-2022-404, 2022
Manuscript not accepted for further review
Short summary
Short summary
We investigate the main drivers of high river flows in near-natural European catchments. While there are a lot of previous research in this area, the understanding of the relative relevance of high flow drivers other than precipitation is understudied. We find that the secondary drivers of high river flows are very diverse and become more relevant for more extreme events. This illustrates the necessity of flood management by considering a multitude of drivers in the context of climate change.
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022, https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Short summary
The land surface model (LSM) contains various uncertain parameters, which are obtained by the empirical relations reflecting the specific local region and can be a source of uncertainty. To seek the optimal parameter values in the snow-related processes of the Noah LSM over South Korea, we have implemented an optimization algorithm, a micro-genetic algorithm using the observations. As a result, the optimized snow parameters improve snowfall prediction.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Won Young Lee, Hyeon-Ju Gim, and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-319, https://doi.org/10.5194/tc-2021-319, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow cover or snow albedo plays a vital role in the atmosphere and land surface interaction. Especially, direct observation of snow is difficult and scarce. That's why a reliable Land Surface Model (LSM), including snow physical processes, is significant. In this study, we tried to give meaningful insights for improving the LSM in the future by identifying the main variables or parameters used and examining the different formulas for snow-related processes of the eight LSMs.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Cited articles
Baek, K., Kim, J. H., Bak, J., Haffner, D. P., Kang, M., and Hong, H.: Evaluation of total ozone measurements from Geostationary Environmental Monitoring Spectrometer (GEMS), Atmos. Meas. Tech., 16, 5461–5478, https://doi.org/10.5194/amt-16-5461-2023, 2023. a
Chen, J. and Hoek, G.: Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis, Environ. Int., 143, 105974, https://doi.org/10.1016/j.envint.2020.105974, 2020. a
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 785–794 pp., ACM, https://doi.org/10.1145/2939672.2939785, 2016. a
Cho, Y., Kim, J., Go, S., Kim, M., Lee, S., Kim, M., Chong, H., Lee, W.-J., Lee, D.-W., Torres, O., and Park, S. S.: First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia, Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024, 2024. a, b, c
Choi, M., Lim, H., Kim, J., Lee, S., Eck, T. F., Holben, B. N., Garay, M. J., Hyer, E. J., Saide, P. E., and Liu, H.: Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign, Atmos. Meas. Tech., 12, 4619–4641, https://doi.org/10.5194/amt-12-4619-2019, 2019. a
Chudnovsky, A. A., Lee, H. J., Kostinski, A., Kotlov, T., and Koutrakis, P.: Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES), J. Air Waste Manag. Assoc., 62, 1022–1031, https://doi.org/10.1080/10962247.2012.695321, 2012. a, b
Ciabattini, M., Rizzello, E., Lucaroni, F., Palombi, L., and Boffetta, P.: Systematic review and meta-analysis of recent high-quality studies on exposure to particulate matter and risk of lung cancer, Environ. Res., 196, 110440, https://doi.org/10.1016/j.envres.2020.110440, 2021. a
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., Van Dingenen, R., Van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. a
Copernicus Climate Change Service (C3S): ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Data Store [data set], https://doi.org/10.24381/cds.adbb2d47, 2025a. a
Copernicus Climate Change Service (C3S): ERA5-Land hourly data from 1950 to present, Copernicus Climate Data Store [data set], https://doi.org/10.24381/cds.e2161bac, 2025b. a
Dai, J., Brasseur, G. P., Vrekoussis, M., Kanakidou, M., Qu, K., Zhang, Y., Zhang, H., and Wang, T.: The atmospheric oxidizing capacity in China – Part 1: Roles of different photochemical processes, Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023, 2023. a
Eck, T. F., Holben, B. N., Giles, D. M., Slutsker, I., Sinyuk, A., Schafer, J. S., Smirnov, A., Sorokin, M., Reid, J. S., Sayer, A. M., Hsu, N. C., Shi, Y. R., Levy, R. C., Lyapustin, A., Rahman, M. A., Liew, S., Salinas Cortijo, S. V., Li, T., Kalbermatter, D., Keong, K. L., Yuggotomo, M. E., Aditya, F., Mohamad, M., Mahmud, M., Chong, T. K., Lim, H., Choon, Y. E., Deranadyan, G., Kusumaningtyas, S. D. A., and Aldrian, E.: AERONET remotely sensed measurements and retrievals of biomass burning aerosol optical properties during the 2015 Indonesian burning season, J. Geophys. Res.-Atmos., 124, 4722–4740, https://doi.org/10.1029/2018JD030182, 2019. a
ESC (Environmental Satellite Center)/ NIER (National Institute of Environmental Research): Environmental Satellite Center, Environmental Satellite Center, https://nesc.nier.go.kr/en/html/index.do (last access: 30 January 2025), 2025. a
Filonchyk, M., Hurynovich, V., and Yan, H.: Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua, Geosci. Front, 11, 2169–2181, https://doi.org/10.1016/j.gsf.2020.03.014, 2020. a
Fu, H., Zhang, Y., Liao, C., Mao, L., Wang, Z., and Hong, N.: Investigating PM2.5 responses to other air pollutants and meteorological factors across multiple temporal scales, Sci. Rep., 10, 15639, https://doi.org/10.1038/s41598-020-72722-z, 2020. a
Ghahremanloo, M., Choi, Y., and Singh, D.: Deep learning bias correction of GEMS tropospheric NO2: A comparative validation of NO2 from GEMS and TROPOMI using Pandora observations, Environ. Int., 190, 108818, https://doi.org/10.1016/j.envint.2024.108818, 2024. a
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019. a, b
Go, S., Kim, J., Mok, J., Irie, H., Yoon, J., Torres, O., Krotkov, N. A., Labow, G., Kim, M., Koo, J.-H., Choi, M., and Lim, H.: Ground-based retrievals of aerosol column absorption in the UV spectral region and their implications for GEMS measurements, Remote Sens. Environ., 245, 111759, https://doi.org/10.1016/j.rse.2020.111759, 2020. a
Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., Zhang, D., Yao, W., Zhou, Z., and Guo, L.: Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017, Sci. Total Environ., 778, 146288, https://doi.org/10.1016/j.scitotenv.2021.146288, 2021. a, b
Gupta, P. and Christopher, S. A.: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach, J. Geophys. Res., 114, 2008JD011497, https://doi.org/10.1029/2008JD011497, 2009a. a, b
Gupta, P. and Christopher, S. A.: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach, J. Geophys. Res., 114, 2008JD011496, https://doi.org/10.1029/2008JD011496, 2009b. a
Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., and Kumar, N.: Satellite remote sensing of particulate matter and air quality assessment over global cities, Atmos. Environ., 40, 5880–5892, https://doi.org/10.1016/j.atmosenv.2006.03.016, 2006. a
Hammer, M. S., Van Donkelaar, A., Bindle, L., Sayer, A. M., Lee, J., Hsu, N. C., Levy, R. C., Sawyer, V., Garay, M. J., Kalashnikova, O. V., Kahn, R. A., Lyapustin, A., and Martin, R. V.: Assessment of the impact of discontinuity in satellite instruments and retrievals on global PM2.5 estimates, Remote Sens. Environ., 294, 113624, https://doi.org/10.1016/j.rse.2023.113624, 2023. a, b
Handschuh, J., Erbertseder, T., Schaap, M., and Baier, F.: Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS, Remote Sens. Appl.: Soc. Environ., 26, 100716, https://doi.org/10.1016/j.rsase.2022.100716, 2022. a, b, c, d
Hauck, H., Berner, A., Gomiscek, B., Stopper, S., Puxbaum, H., Kundi, M., and Preining, O.: On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements, J. Aerosol Sci., 35, 1135–1149, https://doi.org/10.1016/j.jaerosci.2004.04.004, 2004. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteorool. Soc., 146, 1999–2049, 2020. a
Hopke, P. K., Cohen, D. D., Begum, B. A., Biswas, S. K., Ni, B., Pandit, G. G., Santoso, M., Chung, Y.-S., Davy, P., Markwitz, A., Waheed, S., Siddique, N., Santos, F. L., Pabroa, P. C. B., Seneviratne, M. C. S., Wimolwattanapun, W., Bunprapob, S., Vuong, T. B., Duy Hien, P., and Markowicz, A.: Urban air quality in the Asian region, Sci. Total Environ., 404, 103–112, https://doi.org/10.1016/j.scitotenv.2008.05.039, 2008. a
Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating PM 2.5 concentrations in the conterminous United States using the random forest approach, Environ. Sci. Technol., 51, 6936–6944, https://doi.org/10.1021/acs.est.7b01210, 2017. a, b
Jang, B., Stratoulias, D., Aekakkararungroj, A., and Towashiraporn, P.: Validation and Analysis of GEMS Aerosol Optical Depth Product against AERONET over Mainland Southeast Asia, Aerosol Air Qual. Res., 24, 40099, https://doi.org/10.4209/aaqr.240099, 2024. a
Kang, S., Choi, S., Ban, J., Kim, K., Singh, R., Park, G., Kim, M.-B., Yu, D.-G., Kim, J.-A., Kim, S.-W., Park, M.-S., Kim, C.-H., Lee, M., Heo, G., Jang, Y.-W., Ha, S.-S., Park, T., and Lee, T.: Chemical characteristics and sources of PM2.5 in the urban environment of Seoul, Korea, Atmos. Pollut. Res., 13, 101568, https://doi.org/10.1016/j.apr.2022.101568, 2022. a
Kim, H. C., Kim, E., Bae, C., Cho, J. H., Kim, B.-U., and Kim, S.: Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory, Atmos. Chem. Phys., 17, 10315–10332, https://doi.org/10.5194/acp-17-10315-2017, 2017. a
Kim, J., Jeong, U., Ahn, M.-H., Kim, J. H., Park, R. J., Lee, H., Song, C. H., Choi, Y.-S., Lee, K.-H., Yoo, J.-M., Jeong, M.-J., Park, S. K., Lee, K.-M., Song, C.-K., Kim, S.-W., Kim, Y. J., Kim, S.-W., Kim, M., Go, S., Liu, X., Chance, K., Chan Miller, C., Al-Saadi, J., Veihelmann, B., Bhartia, P. K., Torres, O., Abad, G. G., Haffner, D. P., Ko, D. H., Lee, S. H., Woo, J.-H., Chong, H., Park, S. S., Nicks, D., Choi, W. J., Moon, K.-J., Cho, A., Yoon, J., Kim, S.-k., Hong, H., Lee, K., Lee, H., Lee, S., Choi, M., Veefkind, P., Levelt, P. F., Edwards, D. P., Kang, M., Eo, M., Bak, J., Baek, K., Kwon, H.-A., Yang, J., Park, J., Han, K. M., Kim, B.-R., Shin, H.-W., Choi, H., Lee, E., Chong, J., Cha, Y., Koo, J.-H., Irie, H., Hayashida, S., Kasai, Y., Kanaya, Y., Liu, C., Lin, J., Crawford, J. H., Carmichael, G. R., Newchurch, M. J., Lefer, B. L., Herman, J. R., Swap, R. J., Lau, A. K. H., Kurosu, T. P., Jaross, G., Ahlers, B., Dobber, M., McElroy, C. T., and Choi, Y.: New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS), B. Am. Meterol. Soc., 101, E1–E22, https://doi.org/10.1175/BAMS-D-18-0013.1, 2020. a, b, c, d
Kim, S., Kim, D., Hong, H., Chang, L.-S., Lee, H., Kim, D.-R., Kim, D., Yu, J.-A., Lee, D., Jeong, U., Song, C.-K., Kim, S.-W., Park, S. S., Kim, J., Hanisco, T. F., Park, J., Choi, W., and Lee, K.: First-time comparison between NO2 vertical columns from Geostationary Environmental Monitoring Spectrometer (GEMS) and Pandora measurements, Atmos. Meas. Tech., 16, 3959–3972, https://doi.org/10.5194/amt-16-3959-2023, 2023. a
Kim, S.-U. and Kim, K.-Y.: Physical and chemical mechanisms of the daily-to-seasonal variation of PM10 in Korea, Sci. Total Environ., 712, 136429, https://doi.org/10.1016/j.scitotenv.2019.136429, 2020. a, b, c
Koelemeijer, R., Homan, C., and Matthijsen, J.: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe, Atmos. Environ., 40, 5304–5315, https://doi.org/10.1016/j.atmosenv.2006.04.044, 2006. a
Lawrence, M. G.: The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications, B. Am. Meteor. Soc., 86, 225–234, https://doi.org/10.1175/BAMS-86-2-225, 2005. a
Lee, H.-J., Jo, H.-Y., Kim, S.-W., Park, M.-S., and Kim, C.-H.: Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea, Sci. Rep., 9, 13040, https://doi.org/10.1038/s41598-019-49691-z, 2019. a, b
Lee, H.-M., Kim, N. K., Ahn, J., Park, S.-M., Lee, J. Y., and Kim, Y. P.: When and why PM2.5 is high in Seoul, South Korea: Interpreting long-term (2015–2021) ground observations using machine learning and a chemical transport model, Sci. Total Environ., 920, 170822, https://doi.org/10.1016/j.scitotenv.2024.170822, 2024. a, b
Lee, S., Yoon, J., and Park, S. K.: Primary factors and synoptic pattern classification of mega Asian dust storms in Korea, Asia-Pac, J. Atmos. Sci., 60, 655–667, https://doi.org/10.1007/s13143-024-00374-4, 2024. a, b
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell., 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020. a
Ma, J., Yu, Z., Qu, Y., Xu, J., and Cao, Y.: Application of the XGBoost Machine Learning Method in PM2.5 Prediction: A Case Study of Shanghai, Aerosol Air Qual. Res., 20, 128–138, https://doi.org/10.4209/aaqr.2019.08.0408, 2020. a
Mangla, R., Indu, J., and Chakra, S. S.: Inter-comparison of multi-satellites and Aeronet AOD over Indian region, Atmos. Res., 240, 104950, https://doi.org/10.1016/j.atmosres.2020.104950, 2020. a
Martin, R. V., Brauer, M., Van Donkelaar, A., Shaddick, G., Narain, U., and Dey, S.: No one knows which city has the highest concentration of fine particulate matter, Atmos. Environ.-X, 3, 100040, https://doi.org/10.1016/j.aeaoa.2019.100040, 2019. a
Molnar, C.: Interpretable Machine Learning, https://christophm.github.io/interpretable-ml-book/ (last access: 30 January 2025), 2019. a
Moreno-Ríos, A. L., Tejeda-Benítez, L. P., and Bustillo-Lecompte, C. F.: Sources, characteristics, toxicity, and control of ultrafine particles: An overview, Geosci. Front, 13, 101147, https://doi.org/10.1016/j.gsf.2021.101147, 2022. a
Ngarambe, J., Joen, S. J., Han, C.-H., and Yun, G. Y.: Exploring the relationship between particulate matter, CO, SO2, NO2, O3 and urban heat island in Seoul, Korea, J. Hazard. Mater., 403, 123615, https://doi.org/10.1016/j.jhazmat.2020.123615, 2021. a, b
NIER: Geostationary Environment Monitoring Spectrometer (GEMS) Algorithm Theoretical Basis Documents (ATBDs), Tech. rep., National Institute of Environmental Research, https://nesc.nier.go.kr/en/html/satellite/doc/doc.do (last access: 30 January 2025), 2020. a
NIER (National Institute of Environmental Research): AirKorea, https://www.airkorea.or.kr/eng/ (last access: 30 January 2025), 2025. a
O, S., Dutra, E., and Orth, R.: Robustness of process-based versus data-driven modeling in changing climatic conditions, J. Hydrometeorol., 21, 1929–1944, https://doi.org/10.1175/JHM-D-20-0072.1, 2020. a
Ogunjobi, K. O. and Awoleye, P. O.: Intercomparison and validation of satellite and ground-based Aerosol Optical Depth (AOD) retrievals over six AERONET sites in West Africa, Aerosol Sci. Eng., 3, 32–47, https://doi.org/10.1007/s41810-019-00040-7, 2019. a
Rai, P. K.: Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring, Ecotoxicol. Environ. Saf., 129, 120–136, https://doi.org/10.1016/j.ecoenv.2016.03.012, 2016. a
Roy, A., Mandal, M., Das, S., Popek, R., Rakwal, R., Agrawal, G. K., Awasthi, A., and Sarkar, A.: The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function, Sci. Total Environ., 914, 169763, https://doi.org/10.1016/j.scitotenv.2023.169763, 2024. a
Rudke, A. P., Martins, J. A., Martins, L. D., Vieira, C. L. Z., Li, L., Assunção Da Silva, C. F., Dos Santos, A. M., Koutrakis, P., and De Almeida Albuquerque, T. T.: Evaluation and comparison of MODIS aerosol optical depth retrieval algorithms over Brazil, Atmos. Environ., 314, 120130, https://doi.org/10.1016/j.atmosenv.2023.120130, 2023. a
Seo, S., Kim, J., Lee, H., Jeong, U., Kim, W., Holben, B. N., Kim, S.-W., Song, C. H., and Lim, J. H.: Estimation of PM10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign, Atmos. Chem. Phys., 15, 319–334, https://doi.org/10.5194/acp-15-319-2015, 2015. a
Shin, M., Kang, Y., Park, S., Im, J., Yoo, C., and Quackenbush, L. J.: Estimating ground-level particulate matter concentrations using satellite-based data: a review, GISci. Remote Sens., 57, 174–189, https://doi.org/10.1080/15481603.2019.1703288, 2020. a, b
Su, T., Li, J., Li, C., Lau, A. K.-H., Yang, D., and Shen, C.: An intercomparison of AOD-converted PM2.5 concentrations using different approaches for estimating aerosol vertical distribution, Atmos. Environ., 166, 531–542, https://doi.org/10.1016/j.atmosenv.2017.07.054, 2017. a
O, S.: Use of GEMS AOD data to estimate ground-level particulate matter concentrations in South Korea, GitHub [data set], https://github.com/osungmin/gems_aod (last access: 20 March 2025), 2025. a
Tian, J. and Chen, D.: A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements, Remote Sens. Environ., 114, 221–229, https://doi.org/10.1016/j.rse.2009.09.011, 2010. a
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, J. Geophys. Res., 112, 2007JD008809, https://doi.org/10.1029/2007JD008809, 2007. a
Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., and Dou, X.: Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar, Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, 2019. a
Wang, Y. Q., Zhang, X. Y., Sun, J. Y., Zhang, X. C., Che, H. Z., and Li, Y.: Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China, Atmos. Chem. Phys., 15, 13585–13598, https://doi.org/10.5194/acp-15-13585-2015, 2015. a
Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T.: First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact, Nat. Commun., 14, 8349, https://doi.org/10.1038/s41467-023-43862-3, 2023. a
Wen, T.-Y., Chantara, S., Jalaludin, J., Lestari, P., Syafei, A. D., Pham, T. V., and Tsai, Y. I.: Overview of aerosol and air pollution in south eastern Asia countries, Aerosol Air Qual. Res., 23, 230055, https://doi.org/10.4209/aaqr.230055, 2023. a
Yang, H., Peng, Q., Zhou, J., Song, G., and Gong, X.: The unidirectional causality influence of factors on PM2.5 in Shenyang city of China, Sci. Rep., 10, 8403, https://doi.org/10.1038/s41598-020-65391-5, 2020. a
Yang, Z., Zdanski, C., Farkas, D., Bang, J., and Williams, H.: Evaluation of Aerosol Optical Depth (AOD) and PM2.5 associations for air quality assessment, Remote Sens. Appl.: Soc. Environ., 20, 100396, https://doi.org/10.1016/j.rsase.2020.100396, 2020. a, b
Zhai, S., Jacob, D. J., Brewer, J. F., Li, K., Moch, J. M., Kim, J., Lee, S., Lim, H., Lee, H. C., Kuk, S. K., Park, R. J., Jeong, J. I., Wang, X., Liu, P., Luo, G., Yu, F., Meng, J., Martin, R. V., Travis, K. R., Hair, J. W., Anderson, B. E., Dibb, J. E., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Woo, J.-H., Kim, Y., Zhang, Q., and Liao, H.: Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations, Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, 2021. a
Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., and Qiu, Y.: Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing, Atmos. Chem. Phys., 17, 13473–13489, https://doi.org/10.5194/acp-17-13473-2017, 2017. a
Short summary
Air pollutants such as particulate matter with diameters of 10 µm and 2.5 µm or less (PM10 and PM2.5) can cause adverse public health and environment effects; therefore their regular monitoring is crucial to keep pollutant concentrations under control. Our study demonstrates the potential of high-resolution aerosol optical depth (AOD) data from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate ground-level PM concentrations using machine learning models.
Air pollutants such as particulate matter with diameters of 10 µm and 2.5 µm or less (PM10 and...