Articles | Volume 6, issue 3
https://doi.org/10.5194/amt-6-613-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-6-613-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations
J. Gazeaux
UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, UMR8190, LATMOS-IPSL, Paris, France
School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
C. Clerbaux
UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, UMR8190, LATMOS-IPSL, Paris, France
Spectroscopie de l'Atmosphère, Université Libre de Bruxelles, Brussels, Belgium
M. George
UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, UMR8190, LATMOS-IPSL, Paris, France
J. Hadji-Lazaro
UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, UMR8190, LATMOS-IPSL, Paris, France
J. Kuttippurath
UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, UMR8190, LATMOS-IPSL, Paris, France
P.-F. Coheur
Spectroscopie de l'Atmosphère, Université Libre de Bruxelles, Brussels, Belgium
D. Hurtmans
Spectroscopie de l'Atmosphère, Université Libre de Bruxelles, Brussels, Belgium
T. Deshler
Department of Atmospheric Science, Wyoming University, Laramie, WY, USA
M. Kovilakam
Department of Atmospheric Science, Wyoming University, Laramie, WY, USA
P. Campbell
Department of Atmospheric Science, Wyoming University, Laramie, WY, USA
V. Guidard
CNRM/GAME (Météo-France and CNRS), Toulouse, France
F. Rabier
CNRM/GAME (Météo-France and CNRS), Toulouse, France
J.-N. Thépaut
European Centre for Medium-Range Weather Forecasts, Reading, UK
Related authors
No articles found.
Antoine Ehret, Solène Turquety, Maya George, Juliette Hadji-Lazaro, and Cathy Clerbaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3128, https://doi.org/10.5194/egusphere-2024-3128, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Biomass burning has a considerable effect on the chemical composition of the atmosphere and climate, due to the emission of trace gases and aerosols. We examine the relationship between fire variability and the values of carbon monoxide and aerosol optical depth observed by satellite. The observed increase in wildfires has led to a corresponding rise in the mean and extreme values of carbon monoxide and aerosol optical depth during the summer and early autumn across the northern hemisphere.
Felix Wrana, Terry Deshler, Christian Löns, Larry W. Thomason, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2942, https://doi.org/10.5194/egusphere-2024-2942, 2024
Short summary
Short summary
There is a natural and globally occurring layer of small droplets (aerosols) in roughly 20 km altitude in the atmosphere. In this work, the size of these aerosols is calculated from satellite measurements for the years 2002 to 2005, which is important for the aerosols cooling effect on Earth's climate. These years are interesting, because there were no large volcanic eruptions that would change the background state of the aerosols. The results are compared to reliable balloon-borne measurements.
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2941, https://doi.org/10.5194/egusphere-2024-2941, 2024
Short summary
Short summary
Sulfur dioxide emitted during volcanic eruptions can be hazardous for aviation safety. A recent development aims at improving the forecasts of volcanic sulfur dioxide quantities made by the MOCAGE chemistry transport model. Both TROPOMI and IASI instruments are assimilated in the model. We focus on the eruption event of the La Soufrière Saint-Vincent volcano in April 2021. The combined assimilation of IASI and TROPOMI observations always leads to a better analyses and forecasts.
Francesca Vittorioso, Vincent Guidard, and Nadia Fourrié
Atmos. Meas. Tech., 17, 5279–5299, https://doi.org/10.5194/amt-17-5279-2024, https://doi.org/10.5194/amt-17-5279-2024, 2024
Short summary
Short summary
The future Meteosat Third Generation Infrared Sounder (MTG-IRS) will represent a major innovation for the monitoring of the chemical state of the atmosphere. MTG-IRS will have the advantage of being based on a geostationary platform and acquiring data with a high temporal frequency. This work aims to evaluate its potential impact over Europe within a chemical transport model (MOCAGE). The results indicate that the assimilation of these data always has a positive impact on ozone analysis.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Bruno Franco, Lieven Clarisse, Nicolas Theys, Juliette Hadji-Lazaro, Cathy Clerbaux, and Pierre Coheur
Atmos. Chem. Phys., 24, 4973–5007, https://doi.org/10.5194/acp-24-4973-2024, https://doi.org/10.5194/acp-24-4973-2024, 2024
Short summary
Short summary
Using IASI global infrared measurements, we retrieve nitrous acid (HONO) in fire plumes from space. We detect large enhancements of pyrogenic HONO worldwide, especially from intense wildfires at Northern Hemisphere mid- and high latitudes. Predominance of IASI nighttime over daytime measurements sheds light on HONO's extended lifetime and secondary formation during long-range transport in smoke plumes. Our findings deepen the understanding of atmospheric HONO, crucial for air quality assessment.
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-62, https://doi.org/10.5194/amt-2024-62, 2024
Revised manuscript has not been submitted
Short summary
Short summary
We use balloon-borne measurements of aerosol size distribution (ASD) made by the University of Wyoming (UW) to derive distributions which are representative of the ASDs that underlie measurements made by the Stratospheric Aerosol and Gas Experiment II (SAGE II). A simple single mode log-normal distribution has in the past been used to derive ASD from SAGE II data; here we derive bimodal log-normal distributions. Reproducing median aerosol properties, however sometimes with wide variance.
Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, Martin Van Damme, Lieven Clarisse, Pierre Coheur, and Cathy Clerbaux
Atmos. Chem. Phys., 23, 15253–15267, https://doi.org/10.5194/acp-23-15253-2023, https://doi.org/10.5194/acp-23-15253-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. Models have difficulty predicting events of pollution associated with NH3 since ground-based observations of this gas are still relatively sparse and difficult to implement. We present the first relatively long (2.5 years) and continuous record of hourly NH3 concentrations in Paris to determine its temporal variabilities at different scales to unravel emission sources.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev., 16, 6087–6125, https://doi.org/10.5194/gmd-16-6087-2023, https://doi.org/10.5194/gmd-16-6087-2023, 2023
Short summary
Short summary
We implemented an alternative aerosol scheme in the high- and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. This development enables the comparison of different aerosol schemes with different complexity in the same model framework. It identifies improvements compared to a range of observations in both the troposphere and stratosphere.
Lieven Clarisse, Bruno Franco, Martin Van Damme, Tommaso Di Gioacchino, Juliette Hadji-Lazaro, Simon Whitburn, Lara Noppen, Daniel Hurtmans, Cathy Clerbaux, and Pierre Coheur
Atmos. Meas. Tech., 16, 5009–5028, https://doi.org/10.5194/amt-16-5009-2023, https://doi.org/10.5194/amt-16-5009-2023, 2023
Short summary
Short summary
Ammonia is an important atmospheric pollutant. This article presents version 4 of the algorithm which retrieves ammonia abundances from the infrared measurements of the satellite sounder IASI. A measurement operator is introduced that can emulate the measurements (so-called averaging kernels) and measurement uncertainty is better characterized. Several other changes to the product itself are also documented, most of which improve the temporal consistency of the 2007–2022 IASI NH3 dataset.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023, https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Short summary
This work is a theoretical contribution that provides equations for understanding uncertainty prediction applied in air quality where multiple chemical species can interact. A simplified minimal test bed is introduced that shows the ability of our equations to reproduce the statistics estimated from an ensemble of forecasts. While the latter estimation is the state of the art, solving equations is numerically less costly, depending on the number of chemical species, and motivates this research.
Adrien Vu Van, Anne Boynard, Pascal Prunet, Dominique Jolivet, Olivier Lezeaux, Patrice Henry, Claude Camy-Peyret, Lieven Clarisse, Bruno Franco, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 16, 2107–2127, https://doi.org/10.5194/amt-16-2107-2023, https://doi.org/10.5194/amt-16-2107-2023, 2023
Short summary
Short summary
With its near-real-time observations and good horizontal coverage, the Infrared Atmospheric Sounding Interferometer (IASI) instrument can contribute to the monitoring systems for a systematic and continuous detection of exceptional atmospheric events such as fires, anthropogenic pollution episodes, volcanic eruptions, or industrial releases. In this paper, a new approach is described for the detection and characterization of unexpected events in terms of trace gases using IASI radiance spectra.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech., 16, 419–431, https://doi.org/10.5194/amt-16-419-2023, https://doi.org/10.5194/amt-16-419-2023, 2023
Short summary
Short summary
The T-matrix theory was used to compute the backscatter and depolarization of mixed-phase PSC, assuming that particles are solid (NAT or possibly ice) above a threshold radius R and liquid (STS) below, and a single shape is common to all solid particles. We used a dataset of coincident lidar and balloon-borne backscattersonde and OPC measurements. The agreement between modelled and measured backscatter is reasonable and allows us to constrain the parameters R and AR.
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022, https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Short summary
With more than 15 years of measurements, the IASI radiance dataset is becoming a reference climate data record. Its exploitation for satellite applications requires an accurate and unbiased detection of cloud scenes. Here, we present a new cloud detection algorithm for IASI that is both sensitive and consistent over time. It is based on the use of a neural network, relying on IASI radiance information only and taking as a reference the last version of the operational IASI L2 cloud product.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-272, https://doi.org/10.5194/essd-2022-272, 2022
Revised manuscript not accepted
Short summary
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William C. Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux
Atmos. Chem. Phys., 22, 12907–12922, https://doi.org/10.5194/acp-22-12907-2022, https://doi.org/10.5194/acp-22-12907-2022, 2022
Short summary
Short summary
Large cities can experience high levels of fine particulate matter (PM2.5) pollution linked to ammonia (NH3) mainly emitted from agricultural activities. Using a combination of PM2.5 and NH3 measurements from in situ instruments, satellite infrared spectrometers, and atmospheric model simulations, we have demonstrated the role of NH3 and meteorological conditions on pollution events occurring over Paris, Toronto, and Mexico City.
Catherine Wespes, Gaetane Ronsmans, Lieven Clarisse, Susan Solomon, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 22, 10993–11007, https://doi.org/10.5194/acp-22-10993-2022, https://doi.org/10.5194/acp-22-10993-2022, 2022
Short summary
Short summary
The first 10-year data record (2008–2017) of HNO3 total columns measured by the IASI-A/MetOp infrared sounder is exploited to monitor the relationship between the temperature decrease and the HNO3 loss observed each year in the Antarctic stratosphere during the polar night. We verify the recurrence of specific regimes in the cycle of IASI HNO3 and identify the day and the 50 hPa temperature (
drop temperature) corresponding to the onset of denitrification in Antarctic winter for each year.
Marie Bouillon, Sarah Safieddine, Simon Whitburn, Lieven Clarisse, Filipe Aires, Victor Pellet, Olivier Lezeaux, Noëlle A. Scott, Marie Doutriaux-Boucher, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 1779–1793, https://doi.org/10.5194/amt-15-1779-2022, https://doi.org/10.5194/amt-15-1779-2022, 2022
Short summary
Short summary
The IASI instruments have been observing Earth since 2007. We use a neural network to retrieve atmospheric temperatures. This new temperature data record is validated against other datasets and shows good agreement. We use this new dataset to compute trends over the 2008–2020 period. We found a warming of the troposphere, more important at the poles. In the stratosphere, we found that temperatures decrease everywhere except at the South Pole. The cooling is more pronounced at the South pole.
Francesco Cairo, Terry Deshler, Luca Di Liberto, Andrea Scoccione, and Marcel Snels
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-28, https://doi.org/10.5194/amt-2022-28, 2022
Publication in AMT not foreseen
Short summary
Short summary
We study Mie theory on aspherical scatterers, computing on coincident measurements of PSC by lidar and Particle Counters, the backscatter and depolarization of mixed phase PSC. WParticles are assumed solid if larger than R; for these, Mie results are reduced by C < 1 and only a common fraction X < 1 of the backscattering is polarized. We retrieve R, C and X. The match of model and measurement is good for backscattering, poor for depolarization. The hypothesis on X may be not fulfilled.
Jonathan E. Hickman, Niels Andela, Enrico Dammers, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Courtney A. Di Vittorio, Money Ossohou, Corinne Galy-Lacaux, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 16277–16291, https://doi.org/10.5194/acp-21-16277-2021, https://doi.org/10.5194/acp-21-16277-2021, 2021
Short summary
Short summary
Ammonia (NH3) gas emitted from soils and biomass burning contributes to particulate air pollution. We used satellite observations of the atmosphere over Africa to show that declines in NH3 concentrations over South Sudan's Sudd wetland in 2008–2017 are related to variation in wetland extent. We also find NH3 concentrations increased in West Africa as a result of biomass burning and increased in the Lake Victoria region, likely due to agricultural expansion and intensification.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Christoph Mahnke, Ralf Weigel, Francesco Cairo, Jean-Paul Vernier, Armin Afchine, Martina Krämer, Valentin Mitev, Renaud Matthey, Silvia Viciani, Francesco D'Amato, Felix Ploeger, Terry Deshler, and Stephan Borrmann
Atmos. Chem. Phys., 21, 15259–15282, https://doi.org/10.5194/acp-21-15259-2021, https://doi.org/10.5194/acp-21-15259-2021, 2021
Short summary
Short summary
In 2017, in situ aerosol measurements were conducted aboard the M55 Geophysica in the Asian monsoon region. The vertical particle mixing ratio profiles show a distinct layer (15–18.5 km), the Asian tropopause aerosol layer (ATAL). The backscatter ratio (BR) was calculated based on the aerosol size distributions and compared with the BRs detected by a backscatter probe and a lidar aboard M55, and by the CALIOP lidar. All four methods show enhanced BRs in the ATAL altitude range (max. at 17.5 km).
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Simon Rosanka, Bruno Franco, Lieven Clarisse, Pierre-François Coheur, Andrea Pozzer, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 11257–11288, https://doi.org/10.5194/acp-21-11257-2021, https://doi.org/10.5194/acp-21-11257-2021, 2021
Short summary
Short summary
The strong El Niño in 2015 led to a particular dry season in Indonesia and favoured severe peatland fires. The smouldering conditions of these fires and the high carbon content of peat resulted in high volatile organic compound (VOC) emissions. By using a comprehensive atmospheric model, we show that these emissions have a significant impact on the tropospheric composition and oxidation capacity. These emissions are transported into to the lower stratosphere, resulting in a depletion of ozone.
Karn Vohra, Eloise A. Marais, Shannen Suckra, Louisa Kramer, William J. Bloss, Ravi Sahu, Abhishek Gaur, Sachchida N. Tripathi, Martin Van Damme, Lieven Clarisse, and Pierre-F. Coheur
Atmos. Chem. Phys., 21, 6275–6296, https://doi.org/10.5194/acp-21-6275-2021, https://doi.org/10.5194/acp-21-6275-2021, 2021
Short summary
Short summary
We find satellite observations of atmospheric composition generally reproduce variability in surface air pollution, so we use their long record to estimate air quality trends in major UK and Indian cities. Our trend analysis shows that pollutants targeted with air quality policies have not declined in Delhi and Kanpur but have in London and Birmingham, with the exception of a recent and dramatic increase in reactive volatile organics in London. Unregulated ammonia has increased only in Delhi.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Mohammad El Aabaribaoune, Emanuele Emili, and Vincent Guidard
Atmos. Meas. Tech., 14, 2841–2856, https://doi.org/10.5194/amt-14-2841-2021, https://doi.org/10.5194/amt-14-2841-2021, 2021
Short summary
Short summary
This work aims to use correlated IASI errors in the ozone band within a chemical transport model assimilation. The validation of the results against ozone observations from ozonesondes, MLS, and OMI instruments has shown an improvement of the ozone distribution. The computational time was also highly reduced. The surface sea temperature was also improved. The work aims to improve the quality of the ozone prediction, which is important for air quality, climate, and meteorological applications.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Shoma Yamanouchi, Camille Viatte, Kimberly Strong, Erik Lutsch, Dylan B. A. Jones, Cathy Clerbaux, Martin Van Damme, Lieven Clarisse, and Pierre-Francois Coheur
Atmos. Meas. Tech., 14, 905–921, https://doi.org/10.5194/amt-14-905-2021, https://doi.org/10.5194/amt-14-905-2021, 2021
Short summary
Short summary
Ammonia (NH3) is a major source of pollution in the air. As such, there have been increasing efforts to measure the atmospheric abundance of NH3 and its spatial and temporal variability. In this study, long-term measurements of NH3 over Toronto, Canada, derived from multiscale datasets are examined. These NH3 datasets were compared to each other and to a model to better understand NH3 variability and to assess model performance.
Audrey Fortems-Cheiney, Gaëlle Dufour, Karine Dufossé, Florian Couvidat, Jean-Marc Gilliot, Guillaume Siour, Matthias Beekmann, Gilles Foret, Frederik Meleux, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Cathy Clerbaux, and Sophie Génermont
Atmos. Chem. Phys., 20, 13481–13495, https://doi.org/10.5194/acp-20-13481-2020, https://doi.org/10.5194/acp-20-13481-2020, 2020
Short summary
Short summary
Studies have suggested the importance of ammonia emissions on pollution particle formation over Europe, whose main atmospheric source is agriculture. In this study, we performed an inter-comparison of two alternative inventories, both with a reference inventory, that quantify the French ammonia emissions during spring 2011. Over regions with large mineral fertilizer use, like over northeastern France, NH3 emissions are probably considerably underestimated by the reference inventory.
Sara Martínez-Alonso, Merritt Deeter, Helen Worden, Tobias Borsdorff, Ilse Aben, Róisin Commane, Bruce Daube, Gene Francis, Maya George, Jochen Landgraf, Debbie Mao, Kathryn McKain, and Steven Wofsy
Atmos. Meas. Tech., 13, 4841–4864, https://doi.org/10.5194/amt-13-4841-2020, https://doi.org/10.5194/amt-13-4841-2020, 2020
Short summary
Short summary
CO is of great importance in climate and air quality studies. To understand newly available TROPOMI data in the frame of the global CO record, we compared those to satellite (MOPITT) and airborne (ATom) CO datasets. The MOPITT dataset is the longest to date (2000–present) and is well-characterized. We used ATom to validate cloudy TROPOMI data over oceans and investigate TROPOMI's vertical sensitivity to CO. Our results show that TROPOMI CO data are in excellent agreement with the other datasets.
Solène Turquety, Laurent Menut, Guillaume Siour, Sylvain Mailler, Juliette Hadji-Lazaro, Maya George, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Geosci. Model Dev., 13, 2981–3009, https://doi.org/10.5194/gmd-13-2981-2020, https://doi.org/10.5194/gmd-13-2981-2020, 2020
Short summary
Short summary
Biomass burning emissions are a major source of trace gases and aerosols that need to be accounted for in air quality assessment and forecasting. The APIFLAME model presented in this paper allows the calculation of these emissions based on merged satellite observations at hourly time steps and kilometer scales. Implementing emissions in a chemistry transport model allows realistic simulations of fire plumes as illustrated for wildfires in Portugal in August 2016 using the CHIMERE model.
Duane Waliser, Peter J. Gleckler, Robert Ferraro, Karl E. Taylor, Sasha Ames, James Biard, Michael G. Bosilovich, Otis Brown, Helene Chepfer, Luca Cinquini, Paul J. Durack, Veronika Eyring, Pierre-Philippe Mathieu, Tsengdar Lee, Simon Pinnock, Gerald L. Potter, Michel Rixen, Roger Saunders, Jörg Schulz, Jean-Noël Thépaut, and Matthias Tuma
Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, https://doi.org/10.5194/gmd-13-2945-2020, 2020
Short summary
Short summary
This paper provides an update to an international research activity whose objective is to facilitate access to satellite and other types of regional and global datasets for evaluating global models used to produce 21st century climate projections.
Lilian Joly, Olivier Coopmann, Vincent Guidard, Thomas Decarpenterie, Nicolas Dumelié, Julien Cousin, Jérémie Burgalat, Nicolas Chauvin, Grégory Albora, Rabih Maamary, Zineb Miftah El Khair, Diane Tzanos, Joël Barrié, Éric Moulin, Patrick Aressy, and Anne Belleudy
Atmos. Meas. Tech., 13, 3099–3118, https://doi.org/10.5194/amt-13-3099-2020, https://doi.org/10.5194/amt-13-3099-2020, 2020
Short summary
Short summary
This article presents an instrument weighing less than 3 kg for accurate and rapid measurement of greenhouse gases between 0 and 30 km altitude using a meteorological balloon. This article shows the interest of these measurements for the validation of simulations of infrared satellite observations.
Olivier Coopmann, Vincent Guidard, Nadia Fourrié, Béatrice Josse, and Virginie Marécal
Atmos. Meas. Tech., 13, 2659–2680, https://doi.org/10.5194/amt-13-2659-2020, https://doi.org/10.5194/amt-13-2659-2020, 2020
Short summary
Short summary
The objective of this paper is to make a new selection of IASI channels by taking into account inter-channel observation-error correlations. Our selection further reduces the analysis error by 3 % in temperature, 1.8 % in humidity and 0.9 % in ozone compared to Collard’s selection, when using the same number of channels. A selection of 400 IASI channels is proposed at the end of the paper which is able to further reduce analysis errors.
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020, https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Short summary
Thin (~ 100 m) supercooled liquid water (SLW, water staying in liquid phase below 0 °C) clouds have been detected, analysed, and modelled over the Dome C (Concordia, Antarctica) station during the austral summer 2018–2019 using observations and meteorological analyses. The SLW clouds were observed at the top of the planetary boundary layer and the SLW content was always strongly underestimated by the model indicating an incorrect simulation of the surface energy budget of the Antarctic Plateau.
Wei Wang, Cheng Liu, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Yu Xie, Changgong Shan, Qihou Hu, Huifang Zhang, Youwen Sun, Hao Yin, and Nicholas Jones
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-39, https://doi.org/10.5194/amt-2020-39, 2020
Revised manuscript not accepted
Short summary
Short summary
Ground-based FTIR observations are used to obtain the total columns and vertical profiles of atmospheric NH3 at a measurement site in Hefei, China. The spatial distribution, temporal variation, seasonal trend, and emission sources of NH3 are analyzed. FTIR observations captured the seasonal cycle of NH3. The IASI data are in broad agreement with our FTIR data. This is the first time that ground-based FTIR remote sensing of NH3 columns and comparison with satellite data are reported in China.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Camille Viatte, Tianze Wang, Martin Van Damme, Enrico Dammers, Frederik Meleux, Lieven Clarisse, Mark W. Shephard, Simon Whitburn, Pierre François Coheur, Karen E. Cady-Pereira, and Cathy Clerbaux
Atmos. Chem. Phys., 20, 577–596, https://doi.org/10.5194/acp-20-577-2020, https://doi.org/10.5194/acp-20-577-2020, 2020
Short summary
Short summary
We study concentrations and spatiotemporal variabilities of atmospheric NH3 from the agricultural sector to gain insights on its effects on the Paris megacity air quality using satellite data from IASI and CrIS.
We evaluate the regional CHIMERE model capacity to reproduce NH3 and particulate matter (PM2.5) concentrations and variabilities in the domain of study.
We quantify the main meteorological parameters driving the optimal conditions involved in the PM2.5 formation from NH3 in Paris.
Catherine Wespes, Daniel Hurtmans, Simon Chabrillat, Gaétane Ronsmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 19, 14031–14056, https://doi.org/10.5194/acp-19-14031-2019, https://doi.org/10.5194/acp-19-14031-2019, 2019
Short summary
Short summary
This paper highlights the global fingerprint of recent changes in O3 in both the middle–upper and lower stratosphere from the first 10 years of the IASI/Metop-A satellite measurements. The results present the first detection of a significant O3 recovery at middle–high latitudes in winter–spring in the stratosphere as well as in the total column from one single dataset. They also show a speeding up in the recovery at high southern latitudes contrasting with a decline at northern mid-latitudes.
Lieven Clarisse, Martin Van Damme, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Meas. Tech., 12, 5457–5473, https://doi.org/10.5194/amt-12-5457-2019, https://doi.org/10.5194/amt-12-5457-2019, 2019
Short summary
Short summary
An imaging technique called superresolution is applied to IASI satellite measurements of atmospheric ammonia (NH3). Taking into account wind fields, this technique reveals NH3 emission sources much better than previously possible. We present a new global NH3 point-source catalog consisting of more than 500 localized and categorized point sources related to agriculture and five different types of industry.
Enrico Dammers, Chris A. McLinden, Debora Griffin, Mark W. Shephard, Shelley Van Der Graaf, Erik Lutsch, Martijn Schaap, Yonatan Gainairu-Matz, Vitali Fioletov, Martin Van Damme, Simon Whitburn, Lieven Clarisse, Karen Cady-Pereira, Cathy Clerbaux, Pierre Francois Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, https://doi.org/10.5194/acp-19-12261-2019, 2019
Short summary
Short summary
Ammonia is an essential molecule in the environment, but at its current levels it is unsustainable. However, the emissions are highly uncertain. We explore the use of satellites to estimate the ammonia lifetime and emissions around point sources to help improve the budget. The same method applied to different satellite instruments shows consistent results. Comparison to the emission inventories shows that those are underestimating emissions of point sources by on average a factor of 2.5.
Sarah Safieddine, Ana Claudia Parracho, Maya George, Filipe Aires, Victor Pellet, Lieven Clarisse, Simon Whitburn, Olivier Lezeaux, Jean-Noel Thepaut, Hans Hersbach, Gabor Radnoti, Frank Goettsche, Maria Martin, Marie Doutriaux Boucher, Dorothee Coppens, Thomas August, and Cathy Clerbaux
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-185, https://doi.org/10.5194/amt-2019-185, 2019
Preprint withdrawn
Short summary
Short summary
Skin temperature is one of the essential climate variables (ECVs), and is relevant for the current and future understanding of our climate. This work presents a method to retrieve skin temperature from the thermal infrared sounder IASI that provides a global observation of Earth’s surface and atmosphere twice a day. With this method, the first consistent long-term [2007-present] skin temperature record from IASI can be constructed.
Imane Farouk, Nadia Fourrié, and Vincent Guidard
Atmos. Meas. Tech., 12, 3001–3017, https://doi.org/10.5194/amt-12-3001-2019, https://doi.org/10.5194/amt-12-3001-2019, 2019
Short summary
Short summary
A selection for homogeneous scenes for the assimilation of IASI radiances is proposed by using information on the collocated imager pixels inside each infrared observation. A revised method for the selection, which represents a compromise between two methods to select homogeneous scenes using homogeneity criteria already proposed in the literature, has a positive impact on the observation minus the simulation statistics. It has been tested in a numerical weather prediction model for clear sky.
Mathieu Lachatre, Audrey Fortems-Cheiney, Gilles Foret, Guillaume Siour, Gaëlle Dufour, Lieven Clarisse, Cathy Clerbaux, Pierre-François Coheur, Martin Van Damme, and Matthias Beekmann
Atmos. Chem. Phys., 19, 6701–6716, https://doi.org/10.5194/acp-19-6701-2019, https://doi.org/10.5194/acp-19-6701-2019, 2019
Short summary
Short summary
It has been observed from satellite-based instruments that ammonia levels strongly increased between 2011 and 2015. We have used the CHIMERE CTM to understand what could explain such an increase. We first focused on meteorological condition variations, and it has been concluded that meteorology did not explain ammonia evolution. Then, we focused on SO2 and NOx emission evolution rates to evaluate their influences on ammonia. It appears that theses decreases were the main explanation.
Marcel Snels, Andrea Scoccione, Luca Di Liberto, Francesco Colao, Michael Pitts, Lamont Poole, Terry Deshler, Francesco Cairo, Chiara Cagnazzo, and Federico Fierli
Atmos. Chem. Phys., 19, 955–972, https://doi.org/10.5194/acp-19-955-2019, https://doi.org/10.5194/acp-19-955-2019, 2019
Short summary
Short summary
Polar stratospheric clouds are important for stratospheric chemistry and ozone depletion. Here we statistically compare ground-based and satellite-borne lidar measurements at McMurdo (Antarctica) in order to better understand the differences between ground-based and satellite-borne observations. The satellite observations have also been compared to models used in CCMVAL-2 and CCMI studies, with the goal of testing different diagnostic methods for comparing observations with model outputs.
Kang Sun, Lei Zhu, Karen Cady-Pereira, Christopher Chan Miller, Kelly Chance, Lieven Clarisse, Pierre-François Coheur, Gonzalo González Abad, Guanyu Huang, Xiong Liu, Martin Van Damme, Kai Yang, and Mark Zondlo
Atmos. Meas. Tech., 11, 6679–6701, https://doi.org/10.5194/amt-11-6679-2018, https://doi.org/10.5194/amt-11-6679-2018, 2018
Short summary
Short summary
An agile, physics-based approach is developed to oversample irregular satellite observations to a high-resolution common grid. Instead of assuming each sounding as a point or a polygon as in previous methods, the proposed physical oversampling represents soundings as distributions of sensitivity on the ground. This sensitivity distribution can be determined by the spatial response function of each satellite sensor, parameterized as generalized 2-D super Gaussian functions.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Anne Boynard, Daniel Hurtmans, Katerina Garane, Florence Goutail, Juliette Hadji-Lazaro, Maria Elissavet Koukouli, Catherine Wespes, Corinne Vigouroux, Arno Keppens, Jean-Pierre Pommereau, Andrea Pazmino, Dimitris Balis, Diego Loyola, Pieter Valks, Ralf Sussmann, Dan Smale, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 11, 5125–5152, https://doi.org/10.5194/amt-11-5125-2018, https://doi.org/10.5194/amt-11-5125-2018, 2018
Short summary
Short summary
In this paper, we perform a comprehensive validation of the IASI/Metop ozone data using independent observations (satellite, ground-based and ozonesonde). The quality of the IASI total and tropospheric ozone columns in terms of bias and long-term stability is generally good. Compared with ozonesonde data, IASI overestimates (underestimates) the ozone abundance in the stratosphere (troposphere). A negative drift in tropospheric ozone is observed, which is not well understood at this point.
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530, https://doi.org/10.5194/acp-18-12511-2018, https://doi.org/10.5194/acp-18-12511-2018, 2018
Short summary
Short summary
We analyze upper tropospheric CO and O3 using satellite data from limb-viewing (MLS) and nadir-viewing (IASI and OMI) sensors, together with dynamical variables, to examine how the two types of data complement each other in representing the chemical variability associated with the day-to-day dynamical variability in the Asian summer monsoon anticyclone. The results provide new observational evidence of eddy shedding in upper tropospheric CO distribution.
Arno Keppens, Jean-Christopher Lambert, José Granville, Daan Hubert, Tijl Verhoelst, Steven Compernolle, Barry Latter, Brian Kerridge, Richard Siddans, Anne Boynard, Juliette Hadji-Lazaro, Cathy Clerbaux, Catherine Wespes, Daniel R. Hurtmans, Pierre-François Coheur, Jacob C. A. van Peet, Ronald J van der A, Katerina Garane, Maria Elissavet Koukouli, Dimitris S. Balis, Andy Delcloo, Rigel Kivi, Réné Stübi, Sophie Godin-Beekmann, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 3769–3800, https://doi.org/10.5194/amt-11-3769-2018, https://doi.org/10.5194/amt-11-3769-2018, 2018
Short summary
Short summary
This work, performed at the Royal Belgian Institute for Space Aeronomy and the second in a series of four Ozone_cci papers, reports for the first time on data content studies, information content studies, and comparisons with co-located ground-based reference observations for all 13 nadir ozone profile data products that are part of the Climate Research Data Package (CRDP) on atmospheric ozone of the European Space Agency's Climate Change Initiative.
Catherine Wespes, Daniel Hurtmans, Cathy Clerbaux, Anne Boynard, and Pierre-François Coheur
Atmos. Chem. Phys., 18, 6867–6885, https://doi.org/10.5194/acp-18-6867-2018, https://doi.org/10.5194/acp-18-6867-2018, 2018
Gaétane Ronsmans, Catherine Wespes, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 18, 4403–4423, https://doi.org/10.5194/acp-18-4403-2018, https://doi.org/10.5194/acp-18-4403-2018, 2018
Short summary
Short summary
The paper aims at understanding the variability of nitric acid (HNO3) in the stratosphere; 9-year time series of IASI measurements are analysed and, for the first time for HNO3, fitted with regression models in order to identify the factors at play. It was found that the annual variability is the main driver and that the polar stratospheric clouds influence greatly HNO3 variability at polar latitudes. The results show the potential of such analyses to better understand the polar processes.
Javier Andrey-Andrés, Nadia Fourrié, Vincent Guidard, Raymond Armante, Pascal Brunel, Cyril Crevoisier, and Bernard Tournier
Atmos. Meas. Tech., 11, 803–818, https://doi.org/10.5194/amt-11-803-2018, https://doi.org/10.5194/amt-11-803-2018, 2018
Short summary
Short summary
A new generation of the Infrared Atmospheric Sounding Interferometer (IASI) sounders, whose highly accurate measurements are commonly used in environment applications, has already been designed: IASI New Generation (IASI-NG). A database of IASI and IASI-NG simulated observations was built to set a common framework for future impact studies. This first study showed the IASI-NG benefit with an improvement of the temperature retrievals throughout the atmosphere and a lower benefit for the humidity.
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Martin Van Damme, Simon Whitburn, Lieven Clarisse, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Atmos. Meas. Tech., 10, 4905–4914, https://doi.org/10.5194/amt-10-4905-2017, https://doi.org/10.5194/amt-10-4905-2017, 2017
Short summary
Short summary
This paper presents an improved version (v2.1) of the neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from IASI satellite observations. Two datasets using different input data for the retrieval are described: one is based on the operationally provided EUMETSAT Level 2 (ANNI-NH3-v2.1), and the other uses the ECMWF ERA-Interim data (ANNI-NH3-v2.1R-I). Analyses illustrate well that the (meteorological) input data can have a large impact on the retrieved NH3 columns.
Simon Whitburn, Martin Van Damme, Lieven Clarisse, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 17, 12239–12252, https://doi.org/10.5194/acp-17-12239-2017, https://doi.org/10.5194/acp-17-12239-2017, 2017
Short summary
Short summary
Vegetation fires are a major source of NH3 in the atmosphere. A key parameter for the calculation of their emissions, which are still uncertain, is the NH3 enhancement ratio relative to carbon monoxide (CO), ERNH3 / CO. Here we derive new ERNH3 / CO ratios for large tropical regions from the measurements of IASI. We find important variability between and within the studied biomes, as well as interannual variability. This highlights the need for the development of dynamic ERNH3 / CO ratios.
Matthieu Pommier, Cathy Clerbaux, and Pierre-Francois Coheur
Atmos. Chem. Phys., 17, 11089–11105, https://doi.org/10.5194/acp-17-11089-2017, https://doi.org/10.5194/acp-17-11089-2017, 2017
Short summary
Short summary
A new estimation of enhancement ratios relative to CO for HCOOH over seven biomass burning regions is proposed. Fire-affected HCOOH and CO total columns are defined by combining the total columns from IASI, geographic location of the fires from the Moderate Resolution Imaging Spectroradiometer (MODIS), and surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF). An additional classification of the enhancement ratios by type of fuel burned is also provided.
Valentin Duflot, Jean-Luc Baray, Guillaume Payen, Nicolas Marquestaut, Francoise Posny, Jean-Marc Metzger, Bavo Langerock, Corinne Vigouroux, Juliette Hadji-Lazaro, Thierry Portafaix, Martine De Mazière, Pierre-Francois Coheur, Cathy Clerbaux, and Jean-Pierre Cammas
Atmos. Meas. Tech., 10, 3359–3373, https://doi.org/10.5194/amt-10-3359-2017, https://doi.org/10.5194/amt-10-3359-2017, 2017
Jean-Lionel Lacour, Cyrille Flamant, Camille Risi, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 17, 9645–9663, https://doi.org/10.5194/acp-17-9645-2017, https://doi.org/10.5194/acp-17-9645-2017, 2017
Short summary
Short summary
We present temporal and spatial δD distributions derived from IASI obtained above the North Atlantic in the vicinity of West Africa. We show that the seasonality of δD in the North Atlantic is closely associated with the influence of the Saharan heat low (SHL). We provide an interpretation of the temporal and spatial variations in δD and show that the interactions between the large-scale subsidence, the ITCZ, and the SHL can be disentangled thanks to the added information contained in δD.
Terry Deshler, Rene Stübi, Francis J. Schmidlin, Jennifer L. Mercer, Herman G. J. Smit, Bryan J. Johnson, Rigel Kivi, and Bruno Nardi
Atmos. Meas. Tech., 10, 2021–2043, https://doi.org/10.5194/amt-10-2021-2017, https://doi.org/10.5194/amt-10-2021-2017, 2017
Short summary
Short summary
Ozonesondes, small balloon-borne instruments to measure ozone profiles, are used once and lost. Quality control is thus essential. From the mid-1990s to late 2000s differences in manufacturers' (Science Pump and ENSCI) recommended sensor solution concentrations, 1.0 % and 0.5 % potassium iodide, led to some confusion. This paper uses comparison measurements to derive transfer functions to homogenize the measurements made with non-standard combinations of instrument and sensor solution.
Yi Li, Tammy M. Thompson, Martin Van Damme, Xi Chen, Katherine B. Benedict, Yixing Shao, Derek Day, Alexandra Boris, Amy P. Sullivan, Jay Ham, Simon Whitburn, Lieven Clarisse, Pierre-François Coheur, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 17, 6197–6213, https://doi.org/10.5194/acp-17-6197-2017, https://doi.org/10.5194/acp-17-6197-2017, 2017
Luke D. Schiferl, Colette L. Heald, Martin Van Damme, Lieven Clarisse, Cathy Clerbaux, Pierre-François Coheur, John B. Nowak, J. Andrew Neuman, Scott C. Herndon, Joseph R. Roscioli, and Scott J. Eilerman
Atmos. Chem. Phys., 16, 12305–12328, https://doi.org/10.5194/acp-16-12305-2016, https://doi.org/10.5194/acp-16-12305-2016, 2016
Short summary
Short summary
This study combines new observations and a simulation to assess the interannual variability of atmospheric ammonia concentrations over the United States. The model generally underrepresents the observed variability. Nearly two-thirds of the simulated variability is caused by meteorology, twice that caused by regulations on fossil fuel combustion emissions. Adding ammonia emissions variability does not substantially improve the simulation and has little impact on summer particle concentrations.
Gaétane Ronsmans, Bavo Langerock, Catherine Wespes, James W. Hannigan, Frank Hase, Tobias Kerzenmacher, Emmanuel Mahieu, Matthias Schneider, Dan Smale, Daniel Hurtmans, Martine De Mazière, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Meas. Tech., 9, 4783–4801, https://doi.org/10.5194/amt-9-4783-2016, https://doi.org/10.5194/amt-9-4783-2016, 2016
Short summary
Short summary
HNO3 concentrations are obtained from the IASI instrument and the data set is characterized for the first time in terms of vertical profiles, averaging kernels and error profiles. A validation is also conducted through a comparison with ground-based FTIR measurements, with good results. The data set is then used to analyse HNO3 spatial and temporal variability for the year 2011. The latitudinal gradient and the large seasonal variability in polar regions are well represented with IASI data.
Anne Boynard, Daniel Hurtmans, Mariliza E. Koukouli, Florence Goutail, Jérôme Bureau, Sarah Safieddine, Christophe Lerot, Juliette Hadji-Lazaro, Catherine Wespes, Jean-Pierre Pommereau, Andrea Pazmino, Irene Zyrichidou, Dimitris Balis, Alain Barbe, Semen N. Mikhailenko, Diego Loyola, Pieter Valks, Michel Van Roozendael, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 9, 4327–4353, https://doi.org/10.5194/amt-9-4327-2016, https://doi.org/10.5194/amt-9-4327-2016, 2016
Short summary
Short summary
Seven years of O3 observations retrieved from IASI/MetOp satellite instruments are validated with independent data (UV satellite and ground-based data along with ozonesonde profiles). Overall IASI overestimates the total ozone columns (TOC) by 2–7 % depending on the latitude. The assessment of an updated version of the IASI O3 retrieval sofware shows a correction of ~ 4 % in the IASI TOC product, bringing the overall global bias with UV ground-based and satellite data to ~ 1–2 % on average.
Yao Té, Pascal Jeseck, Bruno Franco, Emmanuel Mahieu, Nicholas Jones, Clare Paton-Walsh, David W. T. Griffith, Rebecca R. Buchholz, Juliette Hadji-Lazaro, Daniel Hurtmans, and Christof Janssen
Atmos. Chem. Phys., 16, 10911–10925, https://doi.org/10.5194/acp-16-10911-2016, https://doi.org/10.5194/acp-16-10911-2016, 2016
Short summary
Short summary
This paper studies the seasonal variation of surface and column CO at three different sites (Paris, Jungfraujoch and Wollongong), with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. We find the first evidence of a time lag between surface and free tropospheric CO seasonal variations in the Northern Hemisphere.
B. Quennehen, J.-C. Raut, K. S. Law, N. Daskalakis, G. Ancellet, C. Clerbaux, S.-W. Kim, M. T. Lund, G. Myhre, D. J. L. Olivié, S. Safieddine, R. B. Skeie, J. L. Thomas, S. Tsyro, A. Bazureau, N. Bellouin, M. Hu, M. Kanakidou, Z. Klimont, K. Kupiainen, S. Myriokefalitakis, J. Quaas, S. T. Rumbold, M. Schulz, R. Cherian, A. Shimizu, J. Wang, S.-C. Yoon, and T. Zhu
Atmos. Chem. Phys., 16, 10765–10792, https://doi.org/10.5194/acp-16-10765-2016, https://doi.org/10.5194/acp-16-10765-2016, 2016
Short summary
Short summary
This paper evaluates the ability of six global models and one regional model in reproducing short-lived pollutants (defined here as ozone and its precursors, aerosols and black carbon) concentrations over Asia using satellite, ground-based and airborne observations.
Key findings are that models homogeneously reproduce the trace gas observations although nitrous oxides are underestimated, whereas the aerosol distributions are heterogeneously reproduced, implicating important uncertainties.
Gerald E. Nedoluha, Brian J. Connor, Thomas Mooney, James W. Barrett, Alan Parrish, R. Michael Gomez, Ian Boyd, Douglas R. Allen, Michael Kotkamp, Stefanie Kremser, Terry Deshler, Paul Newman, and Michelle L. Santee
Atmos. Chem. Phys., 16, 10725–10734, https://doi.org/10.5194/acp-16-10725-2016, https://doi.org/10.5194/acp-16-10725-2016, 2016
Short summary
Short summary
Chlorine monoxide (ClO) is central to the formation of the springtime Antarctic ozone hole since it is the catalytic agent in the most important ozone-depleting chemical cycle. We present 20 years of measurements of ClO from the Chlorine monOxide Experiment at Scott Base, Antarctica, and 12 years of measurements from the Aura Microwave Limb Sounder to show that the trends in ClO during the ozone hole season are consistent with changes in stratospheric chlorine observed elsewhere.
Sarah Safieddine, Anne Boynard, Nan Hao, Fuxiang Huang, Lili Wang, Dongsheng Ji, Brice Barret, Sachin D. Ghude, Pierre-François Coheur, Daniel Hurtmans, and Cathy Clerbaux
Atmos. Chem. Phys., 16, 10489–10500, https://doi.org/10.5194/acp-16-10489-2016, https://doi.org/10.5194/acp-16-10489-2016, 2016
Short summary
Short summary
The Asian Summer Monsoon has implication on the weather and climate system as well as pollutants concentration over the monsoon regions leading to effects on the global air quality. Our results, combining satellite, aircraft and ground station data, show that tropospheric ozone, decrease during the period May–August over East and South Asia due to the Monsoon. The magnitude of this drop depends largely on meteorology and geographic location.
Enrico Dammers, Mathias Palm, Martin Van Damme, Corinne Vigouroux, Dan Smale, Stephanie Conway, Geoffrey C. Toon, Nicholas Jones, Eric Nussbaumer, Thorsten Warneke, Christof Petri, Lieven Clarisse, Cathy Clerbaux, Christian Hermans, Erik Lutsch, Kim Strong, James W. Hannigan, Hideaki Nakajima, Isamu Morino, Beatriz Herrera, Wolfgang Stremme, Michel Grutter, Martijn Schaap, Roy J. Wichink Kruit, Justus Notholt, Pierre-F. Coheur, and Jan Willem Erisman
Atmos. Chem. Phys., 16, 10351–10368, https://doi.org/10.5194/acp-16-10351-2016, https://doi.org/10.5194/acp-16-10351-2016, 2016
Short summary
Short summary
Atmospheric ammonia (NH3) measured by the IASI satellite instrument is compared to observations from ground-based FTIR instruments. The seasonal cycles of NH3 in both datasets are consistent for most sites. Correlations are found to be high at sites with considerable NH3 levels, whereas correlations are lower at sites with low NH3 levels close to the detection limit of the IASI instrument. The study's results further indicate that the IASI-NH3 product performs better than earlier estimates.
Matthieu Pommier, Cathy Clerbaux, Pierre-François Coheur, Emmanuel Mahieu, Jean-François Müller, Clare Paton-Walsh, Trissevgeni Stavrakou, and Corinne Vigouroux
Atmos. Chem. Phys., 16, 8963–8981, https://doi.org/10.5194/acp-16-8963-2016, https://doi.org/10.5194/acp-16-8963-2016, 2016
Short summary
Short summary
This work presents for the first time 7 years of formic acid (HCOOH) measurements recorded by the satellite instrument, IASI. The comparison of the data set with ground-based FTIR measurements and a CTM shows the interannual and the seasonal variation are well captured. Global distributions are provided, highlighting the long-range transport of tropospheric HCOOH over the oceans and the detection of source regions e.g. over India, USA, and Africa.
Markus Hermann, Andreas Weigelt, Denise Assmann, Sascha Pfeifer, Thomas Müller, Thomas Conrath, Jens Voigtländer, Jost Heintzenberg, Alfred Wiedensohler, Bengt G. Martinsson, Terry Deshler, Carl A. M. Brenninkmeijer, and Andreas Zahn
Atmos. Meas. Tech., 9, 2179–2194, https://doi.org/10.5194/amt-9-2179-2016, https://doi.org/10.5194/amt-9-2179-2016, 2016
Short summary
Short summary
Aerosol particles are an important component of the Earth's atmosphere. Here we describe the composition and characterization of a new optical particle size spectrometer (OPSS) for aircraft-borne measurements of the aerosol particle size distribution (how many particles there are with a certain size) in the 140–1050 nm size range. The OPSS was characterized throughout concerning its measurement capabilities (response, pressure dependence, coincidence) and validated versus balloon measurement.
Catherine Wespes, Daniel Hurtmans, Louisa K. Emmons, Sarah Safieddine, Cathy Clerbaux, David P. Edwards, and Pierre-François Coheur
Atmos. Chem. Phys., 16, 5721–5743, https://doi.org/10.5194/acp-16-5721-2016, https://doi.org/10.5194/acp-16-5721-2016, 2016
Short summary
Short summary
In this paper, we assess how daily ozone measurements from the Infrared Atmospheric Sounding Interferometer (IASI/MetOp) can contribute to the analyses of the processes driving O3 variability in the troposphere and the stratosphere with a set of parameterized geophysical variables, and we demonstrate the added value of IASI exceptional frequency sampling for monitoring medium- to long-term changes in global ozone concentrations in the future.
Sophie Bauduin, Lieven Clarisse, Juliette Hadji-Lazaro, Nicolas Theys, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Meas. Tech., 9, 721–740, https://doi.org/10.5194/amt-9-721-2016, https://doi.org/10.5194/amt-9-721-2016, 2016
Short summary
Short summary
The paper presents the development of a new retrieval scheme to infer near-surface sulfur dioxide (SO2) concentrations at a global scale from the Infrared Atmospheric Sounding Interferometer (IASI). It demonstrates the capability of such an instrument to globally monitor anthropogenic SO2 pollution in the case of favourable geophysical conditions, especially high thermal contrast and low humidity.
A. Wagner, A.-M. Blechschmidt, I. Bouarar, E.-G. Brunke, C. Clerbaux, M. Cupeiro, P. Cristofanelli, H. Eskes, J. Flemming, H. Flentje, M. George, S. Gilge, A. Hilboll, A. Inness, J. Kapsomenakis, A. Richter, L. Ries, W. Spangl, O. Stein, R. Weller, and C. Zerefos
Atmos. Chem. Phys., 15, 14005–14030, https://doi.org/10.5194/acp-15-14005-2015, https://doi.org/10.5194/acp-15-14005-2015, 2015
Short summary
Short summary
The Monitoring Atmospheric Composition and Climate project (MACC) operationally produces global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the model to simulate concentrations of reactive gases (carbon monoxide, nitrogen dioxide and ozone) between 2009 and 2012. The model reproduced reactive gas concentrations with consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations.
S. Doniki, D. Hurtmans, L. Clarisse, C. Clerbaux, H. M. Worden, K. W. Bowman, and P.-F. Coheur
Atmos. Chem. Phys., 15, 12971–12987, https://doi.org/10.5194/acp-15-12971-2015, https://doi.org/10.5194/acp-15-12971-2015, 2015
S. Rémy, A. Benedetti, A. Bozzo, T. Haiden, L. Jones, M. Razinger, J. Flemming, R. J. Engelen, V. H. Peuch, and J. N. Thepaut
Atmos. Chem. Phys., 15, 12909–12933, https://doi.org/10.5194/acp-15-12909-2015, https://doi.org/10.5194/acp-15-12909-2015, 2015
Short summary
Short summary
In this paper we report on the feedbacks between dust and boundary layer meteorology during a dust storm over Egypt and Libya in April 2012, using an atmospheric composition forecasting system. Dust was found to act on atmospheric stability, leading to an increase (night) or a decrease (day) in dust production. Horizontal gradients of temperature were modified by the radiative impact of the dust layer, leading to changes in wind patterns at the edge of the storm due to the thermal wind effect.
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, M. De Mazière, C. Vigouroux, F. Hendrick, M. George, C. Clerbaux, P.-F. Coheur, and A. Guenther
Atmos. Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-11861-2015, https://doi.org/10.5194/acp-15-11861-2015, 2015
Short summary
Short summary
Formaldehyde columns from two space sensors, GOME-2 and OMI, constrain by inverse modeling the global emissions of HCHO precursors in 2010. The resulting biogenic and pyrogenic fluxes from both optimizations show a very good degree of consistency. The isoprene fluxes are reduced globally by ca. 10%, and emissions from fires decrease by ca. 35%, compared to the prior. Anthropogenic emissions are weakly constrained except over China. Sensitivity inversions show robustness of the inferred fluxes.
M. George, C. Clerbaux, I. Bouarar, P.-F. Coheur, M. N. Deeter, D. P. Edwards, G. Francis, J. C. Gille, J. Hadji-Lazaro, D. Hurtmans, A. Inness, D. Mao, and H. M. Worden
Atmos. Meas. Tech., 8, 4313–4328, https://doi.org/10.5194/amt-8-4313-2015, https://doi.org/10.5194/amt-8-4313-2015, 2015
V. Duflot, C. Wespes, L. Clarisse, D. Hurtmans, Y. Ngadi, N. Jones, C. Paton-Walsh, J. Hadji-Lazaro, C. Vigouroux, M. De Mazière, J.-M. Metzger, E. Mahieu, C. Servais, F. Hase, M. Schneider, C. Clerbaux, and P.-F. Coheur
Atmos. Chem. Phys., 15, 10509–10527, https://doi.org/10.5194/acp-15-10509-2015, https://doi.org/10.5194/acp-15-10509-2015, 2015
Short summary
Short summary
We present global distributions of acetylene (C2H2) and hydrogen cyanide (HCN) total
columns derived from the Infrared Atmospheric Sounding Interferometer (IASI). C2H2 and HCN are ubiquitous atmospheric trace gases with medium tropospheric lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. We show that there is an overall agreement between ground-based and space measurements, as well as model simulations.
G. Baldassarre, L. Pozzoli, C. C. Schmidt, A. Unal, T. Kindap, W. P. Menzel, S. Whitburn, P.-F. Coheur, A. Kavgaci, and J. W. Kaiser
Atmos. Chem. Phys., 15, 8539–8558, https://doi.org/10.5194/acp-15-8539-2015, https://doi.org/10.5194/acp-15-8539-2015, 2015
Short summary
Short summary
We investigate the quality of fire emission estimates derived from SEVIRI FRP for air quality simulations with the Community Multiscale Air Quality (CMAQ) model, by comparing them with available MODIS FRP-based ones.
We demonstrate that geostationary observations allow for refining biomass burning emissions, which can subsequently be used in regional scale air quality models in order to improve the prediction of chemical composition of the atmosphere in presence of large fire episodes.
M. Boichu, L. Clarisse, J.-C. Péré, H. Herbin, P. Goloub, F. Thieuleux, F. Ducos, C. Clerbaux, and D. Tanré
Atmos. Chem. Phys., 15, 8381–8400, https://doi.org/10.5194/acp-15-8381-2015, https://doi.org/10.5194/acp-15-8381-2015, 2015
Short summary
Short summary
IASI spaceborne imagery is used to reconstruct temporal variations of flux and altitude of volcanic emissions via an inversion procedure. Ground-based UV measurements underestimate the SO2 flux by 1 order of magnitude due to ash-induced plume opacity. Assimilation of SO2 altitude, retrieved directly from IASI, should render the inversion scheme independent of the wind shear prerequisite. CALIOP LiDAR observations support the coexistence of SO2 and sulfate aerosols in the volcanic cloud.
L. Di Liberto, R. Lehmann, I. Tritscher, F. Fierli, J. L. Mercer, M. Snels, G. Di Donfrancesco, T. Deshler, B. P. Luo, J-U. Grooß, E. Arnone, B. M. Dinelli, and F. Cairo
Atmos. Chem. Phys., 15, 6651–6665, https://doi.org/10.5194/acp-15-6651-2015, https://doi.org/10.5194/acp-15-6651-2015, 2015
Short summary
Short summary
We investigated chemical and microphysical processes in the late winter Antarctic stratosphere, for the first time (to our knowledge) coupling a detailed microphysical box model to a chemistry model.
Model results have been compared with in situ and remote sensing measurements of particles along trajectories.
Our goal is to contribute to the most recent discussion of the relative role of PSC and liquid (background) aerosol in the ozone depletion.
M. Van Damme, L. Clarisse, E. Dammers, X. Liu, J. B. Nowak, C. Clerbaux, C. R. Flechard, C. Galy-Lacaux, W. Xu, J. A. Neuman, Y. S. Tang, M. A. Sutton, J. W. Erisman, and P. F. Coheur
Atmos. Meas. Tech., 8, 1575–1591, https://doi.org/10.5194/amt-8-1575-2015, https://doi.org/10.5194/amt-8-1575-2015, 2015
Short summary
Short summary
In this study, comprehensive ground-based data sets (Europe, China, Africa and United States) are used to evaluate NH3 measurements from IASI. Global yearly and regional monthly comparisons show fair agreement, while hourly measurements are used to investigate the limitations of direct comparisons. In addition, dense airborne measurements are explored and show the highest correlation coefficients in this study. Finally, the urgent need for independent NH3 column measurements is discussed.
J.-L. Lacour, L. Clarisse, J. Worden, M. Schneider, S. Barthlott, F. Hase, C. Risi, C. Clerbaux, D. Hurtmans, and P.-F. Coheur
Atmos. Meas. Tech., 8, 1447–1466, https://doi.org/10.5194/amt-8-1447-2015, https://doi.org/10.5194/amt-8-1447-2015, 2015
Short summary
Short summary
This paper describes a cross-validation study of tropospheric δD (HDO/H2O ratio) profiles retrieved from IASI spectra (retrieval performed at ULB). We document how these profiles compare to profiles derived from TES/AURA sounder and from three ground-based FTIRs of the NDACC network (produced within the MUSICA project). We show that empirical differences are in agreement with the theoretical expected differences which are dominated by IASI observational and the smoothing error components.
L. Hoffmann, M. J. Alexander, C. Clerbaux, A. W. Grimsdell, C. I. Meyer, T. Rößler, and B. Tournier
Atmos. Meas. Tech., 7, 4517–4537, https://doi.org/10.5194/amt-7-4517-2014, https://doi.org/10.5194/amt-7-4517-2014, 2014
Short summary
Short summary
We present stratospheric gravity wave observations from 4.3 micron radiance measurements by the nadir sounders AIRS and IASI. Three case studies demonstrate that AIRS and IASI provide a consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on five years of data (2008-2012) also showed similar patterns of gravity wave activity. Long-term records from combined satellite data are an exciting prospect for future gravity wave research.
C. Crevoisier, C. Clerbaux, V. Guidard, T. Phulpin, R. Armante, B. Barret, C. Camy-Peyret, J.-P. Chaboureau, P.-F. Coheur, L. Crépeau, G. Dufour, L. Labonnote, L. Lavanant, J. Hadji-Lazaro, H. Herbin, N. Jacquinet-Husson, S. Payan, E. Péquignot, C. Pierangelo, P. Sellitto, and C. Stubenrauch
Atmos. Meas. Tech., 7, 4367–4385, https://doi.org/10.5194/amt-7-4367-2014, https://doi.org/10.5194/amt-7-4367-2014, 2014
H. Oetjen, V. H. Payne, S. S. Kulawik, A. Eldering, J. Worden, D. P. Edwards, G. L. Francis, H. M. Worden, C. Clerbaux, J. Hadji-Lazaro, and D. Hurtmans
Atmos. Meas. Tech., 7, 4223–4236, https://doi.org/10.5194/amt-7-4223-2014, https://doi.org/10.5194/amt-7-4223-2014, 2014
Short summary
Short summary
We apply the TES ozone retrieval algorithm to IASI radiances and characterise the uncertainties and information content of the retrieved ozone profiles. We find that our biases with respect to sondes and our degrees of freedom for signal for ozone are comparable to previously published results from other IASI ozone algorithms. We find that predicted and empirical errors are consistent. In general, the precision of the IASI ozone profiles is better than 20%.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, M. Beekmann, J. Hadji-Lazaro, C. Clerbaux, M. O. Andreae, J. W. Kaiser, and E.-D. Schulze
Atmos. Chem. Phys., 14, 10383–10410, https://doi.org/10.5194/acp-14-10383-2014, https://doi.org/10.5194/acp-14-10383-2014, 2014
S. Safieddine, A. Boynard, P.-F. Coheur, D. Hurtmans, G. Pfister, B. Quennehen, J. L. Thomas, J.-C. Raut, K. S. Law, Z. Klimont, J. Hadji-Lazaro, M. George, and C. Clerbaux
Atmos. Chem. Phys., 14, 10119–10131, https://doi.org/10.5194/acp-14-10119-2014, https://doi.org/10.5194/acp-14-10119-2014, 2014
O. Stein, M. G. Schultz, I. Bouarar, H. Clark, V. Huijnen, A. Gaudel, M. George, and C. Clerbaux
Atmos. Chem. Phys., 14, 9295–9316, https://doi.org/10.5194/acp-14-9295-2014, https://doi.org/10.5194/acp-14-9295-2014, 2014
M. Pommier, J.-L. Lacour, C. Risi, F. M. Bréon, C. Clerbaux, P.-F. Coheur, K. Gribanov, D. Hurtmans, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1581–1595, https://doi.org/10.5194/amt-7-1581-2014, https://doi.org/10.5194/amt-7-1581-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
H. Brenot, N. Theys, L. Clarisse, J. van Geffen, J. van Gent, M. Van Roozendael, R. van der A, D. Hurtmans, P.-F. Coheur, C. Clerbaux, P. Valks, P. Hedelt, F. Prata, O. Rasson, K. Sievers, and C. Zehner
Nat. Hazards Earth Syst. Sci., 14, 1099–1123, https://doi.org/10.5194/nhess-14-1099-2014, https://doi.org/10.5194/nhess-14-1099-2014, 2014
L. Clarisse, P.-F. Coheur, N. Theys, D. Hurtmans, and C. Clerbaux
Atmos. Chem. Phys., 14, 3095–3111, https://doi.org/10.5194/acp-14-3095-2014, https://doi.org/10.5194/acp-14-3095-2014, 2014
M. Van Damme, L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J. W. Erisman, and P. F. Coheur
Atmos. Chem. Phys., 14, 2905–2922, https://doi.org/10.5194/acp-14-2905-2014, https://doi.org/10.5194/acp-14-2905-2014, 2014
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013, https://doi.org/10.5194/acp-13-10227-2013, 2013
M. Boichu, L. Menut, D. Khvorostyanov, L. Clarisse, C. Clerbaux, S. Turquety, and P.-F. Coheur
Atmos. Chem. Phys., 13, 8569–8584, https://doi.org/10.5194/acp-13-8569-2013, https://doi.org/10.5194/acp-13-8569-2013, 2013
F. Jégou, G. Berthet, C. Brogniez, J.-B. Renard, P. François, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron
Atmos. Chem. Phys., 13, 6533–6552, https://doi.org/10.5194/acp-13-6533-2013, https://doi.org/10.5194/acp-13-6533-2013, 2013
N. Theys, R. Campion, L. Clarisse, H. Brenot, J. van Gent, B. Dils, S. Corradini, L. Merucci, P.-F. Coheur, M. Van Roozendael, D. Hurtmans, C. Clerbaux, S. Tait, and F. Ferrucci
Atmos. Chem. Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, https://doi.org/10.5194/acp-13-5945-2013, 2013
M. Krol, W. Peters, P. Hooghiemstra, M. George, C. Clerbaux, D. Hurtmans, D. McInerney, F. Sedano, P. Bergamaschi, M. El Hajj, J. W. Kaiser, D. Fisher, V. Yershov, and J.-P. Muller
Atmos. Chem. Phys., 13, 4737–4747, https://doi.org/10.5194/acp-13-4737-2013, https://doi.org/10.5194/acp-13-4737-2013, 2013
K. A. Tereszchuk, G. González Abad, C. Clerbaux, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, and P. F. Bernath
Atmos. Chem. Phys., 13, 4529–4541, https://doi.org/10.5194/acp-13-4529-2013, https://doi.org/10.5194/acp-13-4529-2013, 2013
A. Inness, F. Baier, A. Benedetti, I. Bouarar, S. Chabrillat, H. Clark, C. Clerbaux, P. Coheur, R. J. Engelen, Q. Errera, J. Flemming, M. George, C. Granier, J. Hadji-Lazaro, V. Huijnen, D. Hurtmans, L. Jones, J. W. Kaiser, J. Kapsomenakis, K. Lefever, J. Leitão, M. Razinger, A. Richter, M. G. Schultz, A. J. Simmons, M. Suttie, O. Stein, J.-N. Thépaut, V. Thouret, M. Vrekoussis, C. Zerefos, and the MACC team
Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, https://doi.org/10.5194/acp-13-4073-2013, 2013
Y. R'Honi, L. Clarisse, C. Clerbaux, D. Hurtmans, V. Duflot, S. Turquety, Y. Ngadi, and P.-F. Coheur
Atmos. Chem. Phys., 13, 4171–4181, https://doi.org/10.5194/acp-13-4171-2013, https://doi.org/10.5194/acp-13-4171-2013, 2013
V. Duflot, D. Hurtmans, L. Clarisse, Y. R'honi, C. Vigouroux, M. De Mazière, E. Mahieu, C. Servais, C. Clerbaux, and P.-F. Coheur
Atmos. Meas. Tech., 6, 917–925, https://doi.org/10.5194/amt-6-917-2013, https://doi.org/10.5194/amt-6-917-2013, 2013
L. Clarisse, P.-F. Coheur, F. Prata, J. Hadji-Lazaro, D. Hurtmans, and C. Clerbaux
Atmos. Chem. Phys., 13, 2195–2221, https://doi.org/10.5194/acp-13-2195-2013, https://doi.org/10.5194/acp-13-2195-2013, 2013
H. M. Worden, M. N. Deeter, C. Frankenberg, M. George, F. Nichitiu, J. Worden, I. Aben, K. W. Bowman, C. Clerbaux, P. F. Coheur, A. T. J. de Laat, R. Detweiler, J. R. Drummond, D. P. Edwards, J. C. Gille, D. Hurtmans, M. Luo, S. Martínez-Alonso, S. Massie, G. Pfister, and J. X. Warner
Atmos. Chem. Phys., 13, 837–850, https://doi.org/10.5194/acp-13-837-2013, https://doi.org/10.5194/acp-13-837-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Alternate materials for the capture and quantification of gaseous oxidized mercury in the atmosphere
Lower-cost eddy covariance for CO2 and H2O fluxes over grassland and agroforestry
Towards a high quality in-situ observation network for oxygenated volatile organic compounds (OVOCs) in Europe: transferring traceability to the International System of Units (SI) to the field
Evaluation of optimized flux chamber design for measurement of ammonia emission after field application of slurry with full-scale farm machinery
Methodology and uncertainty estimation for measurements of methane leakage in a manufactured house
Preparation of low-concentration H2 test gas mixtures in ambient air for calibration of H2 sensors
Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign
Mobile air quality monitoring and comparison to fixed monitoring sites for instrument performance assessment
Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of ATom aircraft observations
Intercomparison of eddy-covariance software for urban tall-tower sites
Assessment of current methane emission quantification techniques for natural gas midstream applications
Performance assessment of state-of-the-art and novel methods for remote compliance monitoring of sulfur emissions from shipping
Intercomparison of detection and quantification methods for methane emissions from the natural gas distribution network in Hamburg, Germany
Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
Comparison of atmospheric CO, CO2 and CH4 measurements at the Schneefernerhaus and the mountain ridge at Zugspitze
Intercomparison of commercial analyzers for atmospheric ethane and methane observations
Real-time measurement of phase partitioning of organic compounds using a proton-transfer-reaction time-of-flight mass spectrometer coupled to a CHARON inlet
A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure
Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands
Characterization of inexpensive metal oxide sensor performance for trace methane detection
Intercomparison of upper tropospheric and lower stratospheric water vapor measurements over the Asian Summer Monsoon during the StratoClim campaign
Air pollution measurement errors: is your data fit for purpose?
Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi
Comment on “Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions” by Long et al. (2021)
Homogenization of the Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations
Long-term behavior and stability of calibration models for NO and NO2 low-cost sensors
Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources
Ozone formation sensitivity study using machine learning coupled with the reactivity of volatile organic compound species
Evaluating uncertainty in sensor networks for urban air pollution insights
Estimating oil sands emissions using horizontal path-integrated column measurements
Global evaluation of the precipitable-water-vapor product from MERSI-II (Medium Resolution Spectral Imager) on board the Fengyun-3D satellite
Field testing two flux footprint models
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
A field intercomparison of three passive air samplers for gaseous mercury in ambient air
Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques
Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods
Performance of open-path GasFinder3 devices for CH4 concentration measurements close to ambient levels
Water vapor density and turbulent fluxes from three generations of infrared gas analyzers
Quantifying fugitive gas emissions from an oil sands tailings pond with open-path Fourier transform infrared measurements
Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments
A miniature Portable Emissions Measurement System (PEMS) for real-driving monitoring of motorcycles
In situ measurement of CO2 and CH4 from aircraft over northeast China and comparison with OCO-2 data
Mobile-platform measurement of air pollutant concentrations in California: performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness
Continuous methane concentration measurements at the Greenland ice sheet–atmosphere interface using a low-cost, low-power metal oxide sensor system
The development of the Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) greenhouse gas profiling system and application for satellite retrieval validation
Atmospheric observations of the water vapour continuum in the near-infrared windows between 2500 and 6600 cm−1
Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors
Sources of error in open-path FTIR measurements of N2O and CO2 emitted from agricultural fields
Constraining the accuracy of flux estimates using OTM 33A
Livia Lown, Sarrah M. Dunham-Cheatham, Seth N. Lyman, and Mae S. Gustin
Atmos. Meas. Tech., 17, 6397–6413, https://doi.org/10.5194/amt-17-6397-2024, https://doi.org/10.5194/amt-17-6397-2024, 2024
Short summary
Short summary
New sorbent materials are needed to preconcentrate atmospheric oxidized mercury for analysis by developing mass spectrometry methods. Chitosan, α-Al2O3, and γ-Al2O3 were tested for quantitative gaseous oxidized mercury sorption in ambient air under laboratory and field conditions. Although these materials sorbed gaseous oxidized mercury without sorbing elemental mercury in the laboratory, less oxidized mercury was recovered from these materials compared to cation exchange membranes in the field.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024, https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland, we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes at only approximately 25 % of the cost of a CON-EC system.
Maitane Iturrate-Garcia, Thérèse Salameh, Paul Schlauri, Annarita Baldan, Martin K. Vollmer, Evdokia Stratigou, Sebastian Dusanter, Jianrong Li, Stefan Persijn, Anja Claude, Rupert Holzinger, Christophe Sutour, Tatiana Macé, Yasin Elshorbany, Andreas Ackermann, Céline Pascale, and Stefan Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2236, https://doi.org/10.5194/egusphere-2024-2236, 2024
Short summary
Short summary
Accurate and comparable measurements of oxygenated organic compounds (OVOCs) are crucial to assess tropospheric ozone burdens and trends. However, monitoring of many OVOCs remains challenging because of their low atmospheric abundance and lack of stable and traceable calibration standards. This research describes the calibration standards developed for selected OVOCs at low amount of substance fractions (<100 nmol mol-1) to transfer traceability to the international system of units to the field.
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech., 17, 4493–4505, https://doi.org/10.5194/amt-17-4493-2024, https://doi.org/10.5194/amt-17-4493-2024, 2024
Short summary
Short summary
Field-applied animal slurry is a significant source of NH3 emission. A new system of dynamic flux chambers for NH3 measurements was developed and validated using three field trials in order to assess the variability after application with a trailing hose at different scales: manual (handheld) application, a 3 m slurry boom, and a 30 m slurry boom. The system facilitates NH3 emission measurement with replication after both manual and farm-scale slurry application with relatively high precision.
Anna Karion, Michael F. Link, Rileigh Robertson, Tyler Boyle, and Dustin Poppendieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-2129, https://doi.org/10.5194/egusphere-2024-2129, 2024
Short summary
Short summary
Methane leaks into houses that use natural gas, from appliances and from pipes and fittings. We measured methane emitted from a manufactured house under different ventilation conditions using indoor and outdoor concentration measurements. We injected methane at prescribed rates into the house and then measured the emissions using our method. We report the error in the calculation based on these tests. We also describe the method and provide guidance on conducting this type of experiment.
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
Mélanie Ghysels, Georges Durry, Nadir Amarouche, Dale Hurst, Emrys Hall, Kensy Xiong, Jean-Charles Dupont, Jean-Christophe Samake, Fabien Frérot, Raghed Bejjani, and Emmanuel D. Riviere
Atmos. Meas. Tech., 17, 3495–3513, https://doi.org/10.5194/amt-17-3495-2024, https://doi.org/10.5194/amt-17-3495-2024, 2024
Short summary
Short summary
A tunable diode laser hygrometer, “Pico-Light H2O”, is presented and its performances are evaluated during the AsA 2022 balloon-borne intercomparison campaign from Aire-sur-l'Adour (France) in September 2022. A total of 15 balloons were launched within the framework of the EU-funded HEMERA project. Pico-Light H2O has been compared in situ with the NOAA Frost Point Hygrometer in the upper troposphere and stratosphere, as well as with meteorological sondes (iMet-4 and M20) in the troposphere.
Andrew R. Whitehill, Melissa Lunden, Brian LaFranchi, Surender Kaushik, and Paul A. Solomon
Atmos. Meas. Tech., 17, 2991–3009, https://doi.org/10.5194/amt-17-2991-2024, https://doi.org/10.5194/amt-17-2991-2024, 2024
Short summary
Short summary
We present an analysis from two large-scale mobile air quality monitoring campaigns in Colorado and California. We compare mobile measurements of air quality to measurements from nearby regulatory sites. The goal of this paper is to explore how fixed-site measurements (such as regulatory site measurements) can be used for ongoing instrument performance assessment of mobile monitoring platforms over extended measurement campaigns.
Jin Liao, Glenn M. Wolfe, Alex E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo Gonzalez Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-72, https://doi.org/10.5194/amt-2024-72, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Validation of satellite HCHO over the remote marine regions is relatively few and modeled HCHO in these regions is usually added as a global satellite HCHO background. This paper intercompares three satellite HCHO retrievals and validates them against in situ observations from the NASA ATom mission. All retrievals are correlated with ATom integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. A persistent low bias is found in all retrievals at high latitudes.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Yunsong Liu, Jean-Daniel Paris, Gregoire Broquet, Violeta Bescós Roy, Tania Meixus Fernandez, Rasmus Andersen, Andrés Russu Berlanga, Emil Christensen, Yann Courtois, Sebastian Dominok, Corentin Dussenne, Travis Eckert, Andrew Finlayson, Aurora Fernández de la Fuente, Catlin Gunn, Ram Hashmonay, Juliano Grigoleto Hayashi, Jonathan Helmore, Soeren Honsel, Fabrizio Innocenti, Matti Irjala, Torgrim Log, Cristina Lopez, Francisco Cortés Martínez, Jonathan Martinez, Adrien Massardier, Helle Gottschalk Nygaard, Paula Agregan Reboredo, Elodie Rousset, Axel Scherello, Matthias Ulbricht, Damien Weidmann, Oliver Williams, Nigel Yarrow, Murès Zarea, Robert Ziegler, Jean Sciare, Mihalis Vrekoussis, and Philippe Bousquet
Atmos. Meas. Tech., 17, 1633–1649, https://doi.org/10.5194/amt-17-1633-2024, https://doi.org/10.5194/amt-17-1633-2024, 2024
Short summary
Short summary
We investigated the performance of 10 methane emission quantification techniques in a blind controlled-release experiment at an inerted natural gas compressor station. We reported their respective strengths, weaknesses, and potential complementarity depending on the emission rates and atmospheric conditions. Additionally, we assess the dependence of emission quantification performance on key parameters such as wind speed, deployment constraints, and measurement duration.
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
Hossein Maazallahi, Antonio Delre, Charlotte Scheutz, Anders M. Fredenslund, Stefan Schwietzke, Hugo Denier van der Gon, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5051–5073, https://doi.org/10.5194/amt-16-5051-2023, https://doi.org/10.5194/amt-16-5051-2023, 2023
Short summary
Short summary
Measurement methods are increasingly deployed to verify reported methane emissions of gas leaks. This study describes unique advantages and limitations of three methods. Two methods are rapidly deployed, but uncertainties and biases exist for some leak locations. In contrast, the suction method could accurately determine leak rates in principle. However, this method, which provides data for the German emission inventory, creates an overall low bias in our study due to non-random site selection.
Max Müller, Stefan Weigl, Jennifer Müller-Williams, Matthias Lindauer, Thomas Rück, Simon Jobst, Rudolf Bierl, and Frank-Michael Matysik
Atmos. Meas. Tech., 16, 4263–4270, https://doi.org/10.5194/amt-16-4263-2023, https://doi.org/10.5194/amt-16-4263-2023, 2023
Short summary
Short summary
Over a period of 5 d, a photoacoustic methane sensor was compared with a Picarro cavity ring-down (G2301) spectrometer. Both devices measured the ambient methane concentration at the meteorological observatory Hohenpeißenberg. Cross-sensitivities on the photoacoustic signal, due to fluctuating ambient humidity, were compensated by applying the CoNRad algorithm. The results show that photoacoustic sensors have the potential for accurate and precise greenhouse gas monitoring.
Antje Hoheisel, Cedric Couret, Bryan Hellack, and Martina Schmidt
Atmos. Meas. Tech., 16, 2399–2413, https://doi.org/10.5194/amt-16-2399-2023, https://doi.org/10.5194/amt-16-2399-2023, 2023
Short summary
Short summary
High-precision CO2, CH4 and CO measurements have been carried out at Zugspitze for decades. New technologies make it possible to analyse these gases with high temporal resolution. This allows the detection of local pollution. To this end, measurements have been performed on the mountain ridge (ZGR) and are compared to routine measurements at the Schneefernerhaus (ZSF). Careful manual flagging of pollution events in the ZSF data leads to consistency with the little influenced ZGR time series.
Róisín Commane, Andrew Hallward-Driemeier, and Lee T. Murray
Atmos. Meas. Tech., 16, 1431–1441, https://doi.org/10.5194/amt-16-1431-2023, https://doi.org/10.5194/amt-16-1431-2023, 2023
Short summary
Short summary
Methane / ethane ratios can be used to identify and partition the different sources of methane, especially in areas with natural gas mixed with biogenic methane emissions, such as cities. We tested three commercially available laser-based analyzers for sensitivity, precision, size, power requirement, ease of use on mobile platforms, and expertise needed to operate the instrument, and we make recommendations for use in various situations.
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023, https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
Short summary
This work examined the phase partitioning behaviors of organic compounds at hourly resolution in ambient conditions with the use of the CHemical Analysis of aeRosols ONline (CHARON) inlet coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Properly accounting for the neutral losses of small moieties during the molecular feature extraction from PTR mass spectra could significantly reduce uncertainties associated with the gas–particle partitioning measurements.
Stuart N. Riddick, Riley Ancona, Mercy Mbua, Clay S. Bell, Aidan Duggan, Timothy L. Vaughn, Kristine Bennett, and Daniel J. Zimmerle
Atmos. Meas. Tech., 15, 6285–6296, https://doi.org/10.5194/amt-15-6285-2022, https://doi.org/10.5194/amt-15-6285-2022, 2022
Short summary
Short summary
This describes controlled release experiments at the METEC facility in Fort Collins, USA, that investigates the accuracy and precision of five methods commonly used to measure methane emissions. Methods include static/dynamic chambers, hi flow sampling, a backward Lagrangian stochastic method, and a Gaussian plume method. This is the first time that methods for measuring CH4 emissions from point sources less than 200 g CH4 h−1 have been quantitively assessed against references and each other.
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022, https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Short summary
Accurately estimating greenhouse gas (GHG) emissions is essential to reaching net-zero goals to combat the climate crisis. Airborne box-flights are ideal for assessing regional GHG emissions, as they can attain small error. We compare two box-flight algorithms and found they produce similar results, but daily variability must be considered when deriving emissions inventories. Increasing the consistency and agreement between airborne methods moves us closer to achieving more accurate estimates.
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022, https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary
Short summary
Methane is a major greenhouse gas and contributor to climate change with various human-caused and natural sources. Currently, atmospheric methane is expensive to sense. We investigate repurposing cheap methane safety sensors for atmospheric sensing, finding several promising sensors and identifying some of the challenges in this approach. This work will help in developing inexpensive sensor networks for methane monitoring, which will aid in reducing methane leaks and emissions.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Sebastian Diez, Stuart E. Lacy, Thomas J. Bannan, Michael Flynn, Tom Gardiner, David Harrison, Nicholas Marsden, Nicholas A. Martin, Katie Read, and Pete M. Edwards
Atmos. Meas. Tech., 15, 4091–4105, https://doi.org/10.5194/amt-15-4091-2022, https://doi.org/10.5194/amt-15-4091-2022, 2022
Short summary
Short summary
Regardless of the cost of the measuring instrument, there are no perfect measurements. For this reason, we compare the quality of the information provided by cheap devices when they are used to measure air pollutants and we try to emphasise that before judging the potential usefulness of the devices, the user must specify his own needs. Since commonly used performance indices/metrics can be misleading in qualifying this, we propose complementary visual analysis to the more commonly used metrics.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Noah Bernays, Daniel A. Jaffe, Irina Petropavlovskikh, and Peter Effertz
Atmos. Meas. Tech., 15, 3189–3192, https://doi.org/10.5194/amt-15-3189-2022, https://doi.org/10.5194/amt-15-3189-2022, 2022
Short summary
Short summary
Ozone is an important pollutant that impacts millions of people worldwide. It is therefore important to ensure accurate measurements. A recent surge in wildfire activity in the USA has resulted in significant enhancements in ozone concentration. However given the nature of wildfire smoke, there are questions about our ability to accurately measure ozone. In this comment, we discuss possible biases in the UV measurements of ozone in the presence of smoke.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, https://doi.org/10.5194/amt-15-3105-2022, 2022
Short summary
Short summary
The 1991–2021 Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground-based instruments also measuring ozone at the same station (lidar, surface measurements) and with colocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Horim Kim, Michael Müller, Stephan Henne, and Christoph Hüglin
Atmos. Meas. Tech., 15, 2979–2992, https://doi.org/10.5194/amt-15-2979-2022, https://doi.org/10.5194/amt-15-2979-2022, 2022
Short summary
Short summary
In this study, the performance of electrochemical sensors for NO and NO2 for measuring air quality was determined over a longer operating period. The performance of NO sensors remained reliable for more than 18 months. However, the NO2 sensors showed decreasing performance over time. During deployment, we found that the NO2 sensors can distinguish general pollution levels, but they proved unsuitable for accurate measurements due to significant biases.
Randulph Morales, Jonas Ravelid, Katarina Vinkovic, Piotr Korbeń, Béla Tuzson, Lukas Emmenegger, Huilin Chen, Martina Schmidt, Sebastian Humbel, and Dominik Brunner
Atmos. Meas. Tech., 15, 2177–2198, https://doi.org/10.5194/amt-15-2177-2022, https://doi.org/10.5194/amt-15-2177-2022, 2022
Short summary
Short summary
Mapping trace gas emission plumes using in situ measurements from unmanned aerial vehicles (UAVs) is an emerging and attractive possibility to quantify emissions from localized sources. We performed an extensive controlled-release experiment to develop an optimal quantification method and to determine the related uncertainties under various environmental and sampling conditions. Our approach was successful in quantifying local methane sources from drone-based measurements.
Junlei Zhan, Yongchun Liu, Wei Ma, Xin Zhang, Xuezhong Wang, Fang Bi, Yujie Zhang, Zhenhai Wu, and Hong Li
Atmos. Meas. Tech., 15, 1511–1520, https://doi.org/10.5194/amt-15-1511-2022, https://doi.org/10.5194/amt-15-1511-2022, 2022
Short summary
Short summary
Our study investigated the O3 formation sensitivity in Beijing using a random forest model coupled with the reactivity of volatile organic
compound (VOC) species. Results found that random forest accurately predicted O3 concentration when initial VOCs were considered, and relative importance correlated well with O3 formation potential. The O3 isopleth curves calculated by the random forest model were generally comparable with those calculated by the box model.
Daniel R. Peters, Olalekan A. M. Popoola, Roderic L. Jones, Nicholas A. Martin, Jim Mills, Elizabeth R. Fonseca, Amy Stidworthy, Ella Forsyth, David Carruthers, Megan Dupuy-Todd, Felicia Douglas, Katie Moore, Rishabh U. Shah, Lauren E. Padilla, and Ramón A. Alvarez
Atmos. Meas. Tech., 15, 321–334, https://doi.org/10.5194/amt-15-321-2022, https://doi.org/10.5194/amt-15-321-2022, 2022
Short summary
Short summary
We present more than 2 years of NO2 pollution measurements from a sensor network in Greater London and compare results to an extensive network of expensive reference-grade monitors. We show the ability of our lower-cost network to generate robust insights about local air pollution. We also show how irregularities in sensor performance lead to some uncertainty in results and demonstrate ways that future users can characterize and mitigate uncertainties to get the most value from sensor data.
Timothy G. Pernini, T. Scott Zaccheo, Jeremy Dobler, and Nathan Blume
Atmos. Meas. Tech., 15, 225–240, https://doi.org/10.5194/amt-15-225-2022, https://doi.org/10.5194/amt-15-225-2022, 2022
Short summary
Short summary
We demonstrate a novel approach to estimating emissions from oil sands operations that utilizes the GreenLITE™ gas concentration measurement system and an atmospheric model. While deployed at a facility in the Athabasca region of Alberta, Canada, CH4 emissions from a tailings pond were estimated to be 7.2 t/d for July–October 2019, and 5.1 t/d for March–July 2020. CH4 emissions from an open-pit mine were estimated to be 24.6 t/d for September–October 2019.
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech., 14, 7821–7834, https://doi.org/10.5194/amt-14-7821-2021, https://doi.org/10.5194/amt-14-7821-2021, 2021
Short summary
Short summary
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager) is compared with PWV from the Integrated Global Radiosonde Archive (IGRA). Our results show a good agreement between PWV from MERSI-II and IGRA and that MERSI-II PWV is slightly underestimated on the whole, especially in summer. The bias between MERSI-II and IGRA grows with a larger spatial distance between the footprint of the satellite and the IGRA station, as well as increasing PWV.
Trevor W. Coates, Monzurul Alam, Thomas K. Flesch, and Guillermo Hernandez-Ramirez
Atmos. Meas. Tech., 14, 7147–7152, https://doi.org/10.5194/amt-14-7147-2021, https://doi.org/10.5194/amt-14-7147-2021, 2021
Short summary
Short summary
A field study tested two footprint models for calculating surface emissions from downwind flux measurements. Emission rates from a 10 × 10 m synthetic source were estimated with the simple Kormann–Meixner model and a sophisticated Lagrangian stochastic model. Both models underestimated emissions by approximately 30 %, and no statistical differences were observed between the models. Footprint models are critically important for interpreting eddy covariance measurements.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021, https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary
Short summary
Three instruments that use different techniques to measure gaseous formaldehyde concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. The results demonstrated the need to correct the baseline in measurements by instruments that use the Hantzsch reaction or make use of cavity ring-down spectroscopy. After applying corrections, all three methods gave accurate and precise measurements within their specifications.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Mei Bai, José I. Velazco, Trevor W. Coates, Frances A. Phillips, Thomas K. Flesch, Julian Hill, David G. Mayer, Nigel W. Tomkins, Roger S. Hegarty, and Deli Chen
Atmos. Meas. Tech., 14, 3469–3479, https://doi.org/10.5194/amt-14-3469-2021, https://doi.org/10.5194/amt-14-3469-2021, 2021
Short summary
Short summary
The development and validation of management practices to mitigate methane (CH4) emissions from livestock require accurate emission measurements. We compared the inverse dispersion modelling (IDM) and tracer-ratio techniques to measure CH4 emissions from cattle. Both measurements agreed well but were higher than IPCC estimates. We suggest that the IDM approach can provide an accurate method of estimating cattle emissions, and IPCC estimates may have larger uncertainties.
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Christoph Häni, Marcel Bühler, Albrecht Neftel, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 14, 1733–1741, https://doi.org/10.5194/amt-14-1733-2021, https://doi.org/10.5194/amt-14-1733-2021, 2021
Seth Kutikoff, Xiaomao Lin, Steven R. Evett, Prasanna Gowda, David Brauer, Jerry Moorhead, Gary Marek, Paul Colaizzi, Robert Aiken, Liukang Xu, and Clenton Owensby
Atmos. Meas. Tech., 14, 1253–1266, https://doi.org/10.5194/amt-14-1253-2021, https://doi.org/10.5194/amt-14-1253-2021, 2021
Short summary
Short summary
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of water vapor fluxes. As optically improved infrared gas sensors are newly employed, we evaluated the performance of water vapor density and water vapor flux from three generations of infrared gas sensors in Bushland, Texas, USA. From our experiments, fluxes from the old sensors were best representative of evapotranspiration based on a world-class lysimeter reference measurement.
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Ravi Sahu, Ayush Nagal, Kuldeep Kumar Dixit, Harshavardhan Unnibhavi, Srikanth Mantravadi, Srijith Nair, Yogesh Simmhan, Brijesh Mishra, Rajesh Zele, Ronak Sutaria, Vidyanand Motiram Motghare, Purushottam Kar, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, https://doi.org/10.5194/amt-14-37-2021, 2021
Short summary
Short summary
A unique feature of our low-cost sensor deployment is a swap-out experiment wherein four of the six sensors were relocated to different sites in the two phases. The swap-out experiment is crucial in investigating the efficacy of calibration models when applied to weather and air quality conditions vastly different from those present during calibration. We developed a novel local calibration algorithm based on metric learning that offers stable and accurate calibration performance.
Michal Vojtisek-Lom, Alessandro A. Zardini, Martin Pechout, Lubos Dittrich, Fausto Forni, François Montigny, Massimo Carriero, Barouch Giechaskiel, and Giorgio Martini
Atmos. Meas. Tech., 13, 5827–5843, https://doi.org/10.5194/amt-13-5827-2020, https://doi.org/10.5194/amt-13-5827-2020, 2020
Short summary
Short summary
The feasibility of monitoring on-road emissions from small motorcycles with two highly compact portable emissions monitoring systems was evaluated on three motorcycles, with positive results. Mass emissions measured on the road were consistent among repeated runs, with differences between laboratory and on-road tests much larger than those between portable and laboratory systems, which were, on the average, within units of percent over standard test cycles.
Xiaoyu Sun, Minzheng Duan, Yang Gao, Rui Han, Denghui Ji, Wenxing Zhang, Nong Chen, Xiangao Xia, Hailei Liu, and Yanfeng Huo
Atmos. Meas. Tech., 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020, https://doi.org/10.5194/amt-13-3595-2020, 2020
Short summary
Short summary
The accurate measurement of greenhouse gases and their vertical distribution in the atmosphere is significant to the study of climate change and satellite remote sensing. Carbon dioxide and methane between 0.6 and 7 km were measured by the aircraft King Air 350ER in Jiansanjiang, northeast China, on 7–11 August 2018. The profiles show strong variation with the altitude and time, so the vertical structure of gases should be taken into account in the current satellite retrieval algorithm.
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
Christian Juncher Jørgensen, Jacob Mønster, Karsten Fuglsang, and Jesper Riis Christiansen
Atmos. Meas. Tech., 13, 3319–3328, https://doi.org/10.5194/amt-13-3319-2020, https://doi.org/10.5194/amt-13-3319-2020, 2020
Short summary
Short summary
Recent discoveries have shown large emissions of methane (CH4) to the atmosphere from meltwater at the Greenland ice sheet (GrIS). Low-cost and low-power gas sensor technology offers great potential to supplement CH4 measurements using very expensive reference analyzers under harsh and remote conditions. In this paper we evaluate the in situ performance at the GrIS of a low-cost CH4 sensor to a state-of-the-art analyzer and find very excellent agreement between the two methods.
Lilian Joly, Olivier Coopmann, Vincent Guidard, Thomas Decarpenterie, Nicolas Dumelié, Julien Cousin, Jérémie Burgalat, Nicolas Chauvin, Grégory Albora, Rabih Maamary, Zineb Miftah El Khair, Diane Tzanos, Joël Barrié, Éric Moulin, Patrick Aressy, and Anne Belleudy
Atmos. Meas. Tech., 13, 3099–3118, https://doi.org/10.5194/amt-13-3099-2020, https://doi.org/10.5194/amt-13-3099-2020, 2020
Short summary
Short summary
This article presents an instrument weighing less than 3 kg for accurate and rapid measurement of greenhouse gases between 0 and 30 km altitude using a meteorological balloon. This article shows the interest of these measurements for the validation of simulations of infrared satellite observations.
Jonathan Elsey, Marc D. Coleman, Tom D. Gardiner, Kaah P. Menang, and Keith P. Shine
Atmos. Meas. Tech., 13, 2335–2361, https://doi.org/10.5194/amt-13-2335-2020, https://doi.org/10.5194/amt-13-2335-2020, 2020
Short summary
Short summary
Water vapour is an important component in trying to understand the flows of energy between the Sun and Earth, since it is opaque to radiation emitted by both the surface and the Sun. In this paper, we study how it absorbs sunlight by way of its
continuum, a property which is poorly understood and with few measurements. Our results indicate that this continuum absorption may be more significant than previously thought, potentially impacting satellite observations and climate studies.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Cheng-Hsien Lin, Richard H. Grant, Albert J. Heber, and Cliff T. Johnston
Atmos. Meas. Tech., 13, 2001–2013, https://doi.org/10.5194/amt-13-2001-2020, https://doi.org/10.5194/amt-13-2001-2020, 2020
Short summary
Short summary
Gas quantification using the open-path Fourier transform infrared spectrometer (OP-FTIR) is subject to interferences of environmental variables, leading to errors in gas concentration calculations. This study investigated the effects of ambient water vapour content, temperature, path lengths, and wind speed on the quantification of N2O and CO2 concentrations, which can help the OP-FTIR users to avoid these errors and improve the precision and accuracy of the atmospheric gas quantification.
Rachel Edie, Anna M. Robertson, Robert A. Field, Jeffrey Soltis, Dustin A. Snare, Daniel Zimmerle, Clay S. Bell, Timothy L. Vaughn, and Shane M. Murphy
Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, https://doi.org/10.5194/amt-13-341-2020, 2020
Short summary
Short summary
Ground-based measurements of emissions from oil and natural gas production are important for understanding emission distributions and improving emission inventories. Here, measurement technique Other Test Method 33A (OTM 33A) is validated through several test releases staged at the Methane Emissions Technology Evaluation Center. These tests suggest OTM 33A has no inherent bias and that a group of OTM measurements is within 5 % of the known mean emission rate.
Cited articles
Anton, M. D., Loyola, D., Clerbaux, C., López, M., Vilaplana, J. M., Bañón, M., Hadji-Lazaro, J., Valks, P., Hao, N., Zimmer, W., Coheur, P.-F., Hurtmans, D., and Alados-Arboledas, L.: Validation of the Metop-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula, Remote Sens. Environ., 115, 1380–1386, 2011.
August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on Metop-A: operational level 2 retrievals after five years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012.
Boxe, C. S., Worden, J. R., Bowman, K. W., Kulawik, S. S., Neu, J. L., Ford, W. C., Osterman, G. B., Herman, R. L., Eldering, A., Tarasick, D. W., Thompson, A. M., Doughty, D. C., Hoffmann, M. R., and Oltmans, S. J.: Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis, Atmos. Chem. Phys., 10, 9901–9914, https://doi.org/10.5194/acp-10-9901-2010, 2010.
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009.
Collard, A. and McNally, A. P.: The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF, Q. J. Roy. Meteorol. Soc., 135, 1044–1058, https://doi.org/10.1002/qj.410, 2009.
Dufour, G., Eremenko, M., Griesfeller, A., Barret, B., LeFlochmoën, E., Clerbaux, C., Hadji-Lazaro, J., Coheur, P.-F., and Hurtmans, D.: Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes, Atmos. Meas. Tech., 5, 611–630, https://doi.org/10.5194/amt-5-611-2012, 2012.
Frontier, S., Davoult, D., Gentilhomme, V., and Lagadeuc, Y.: Statistique pour les sciences de la vie et de l'environnement, Dunod, Paris, France, Sciences Sup Edn., 2007.
Hilton, F., August, T., Barnet, C., Bouchard, A., Camy-Peyret, C., Clarisse, L., Clerbaux, C., Coheur, P.-F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Faijan, F., Fourrié, N., Gambacorta, A., Gauguin, S., Guidard, V., Hurtmans, D., Illingworth, S., Jacquinet-Husson, N., Kerzenmacher, T., Klaes, D., Lavanant, L., Masiello, G., Matricardi, M., McNally, T., Newman, S., Pavelin, E., Péquignot, E., Phulpin, T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Taylor, J., Tobin, D., Uspensky, A., and Zhou, D.: Hyperspectral earth observation from IASI: five years of accomplishments, B. Am. Meteorol. Soc., 93, 347–370, https://doi.org/10.1175/BAMS-D-11-00027.1, 2012.
Hurtmans, D., Coheur, P.-F., Wespes, C., Clarisse, L., Scharf, O., Clerbaux, C., Hadji-Lazaro, J., George, M., and Turquety, S.: FORLI radiative transfer and retrieval code for IASI, J. Quant. Spectrosc. Ra., 113, 1391–1408, https://doi.org/10.1016/j.jqsrt.2012.02.036, 2012.
Kuttippurath, J., Goutail, F., Pommereau, J.-P., Lefèvre, F., Roscoe, H. K., Pazmiño, A., Feng, W., Chipperfield, M. P., and Godin-Beekmann, S.: Estimation of Antarctic ozone loss from ground-based total column measurements, Atmos. Chem. Phys., 10, 6569–6581, https://doi.org/10.5194/acp-10-6569-2010, 2010.
McPeters, R., Labow, G., and Logan, J.: Ozone climatological profiles for satellite retrieval algorithms, J. Geophys. Res., 112, D05308, https://doi.org/10.1029/2005JD006823, 2007.
Mercer, J. L., Kröger, C., Nardi, B., Johnson, B. J., Chipperfield, M. P., Wood, S. W., Nichol, S. E., Santee, M. L., and Deshler, T.: Comparison of measured and modeled ozone above McMurdo Station, Antarctica, 1989–2003, during austral winter/spring, J. Geophys. Res., 112, D19307, https://doi.org/10.1029/2006JD007982, 2007.
Newman, P. A., Oman, L. D., Douglass, A. R., Fleming, E. L., Frith, S. M., Hurwitz, M. M., Kawa, S. R., Jackman, C. H., Krotkov, N. A., Nash, E. R., Nielsen, J. E., Pawson, S., Stolarski, R. S., and Velders, G. J. M.: What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113–2128, https://doi.org/10.5194/acp-9-2113-2009, 2009.
Parrington, M., Palmer, P. I., Henze, D. K., Tarasick, D. W., Hyer, E. J., Owen, R. C., Helmig, D., Clerbaux, C., Bowman, K. W., Deeter, M. N., Barratt, E. M., Coheur, P.-F., Hurtmans, D., Jiang, Z., George, M., and Worden, J. R.: The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010, Atmos. Chem. Phys., 12, 2077–2098, https://doi.org/10.5194/acp-12-2077-2012, 2012.
Pommier, M., Clerbaux, C., Law, K. S., Ancellet, G., Bernath, P., Coheur, P.-F., Hadji-Lazaro, J., Hurtmans, D., Nédélec, P., Paris, J.-D., Ravetta, F., Ryerson, T. B., Schlager, H., and Weinheimer, A. J.: Analysis of IASI tropospheric O3 data over the Arctic during POLARCAT campaigns in 2008, Atmos. Chem. Phys., 12, 7371–7389, https://doi.org/10.5194/acp-12-7371-2012, 2012.
Rabier, F., Bouchard, A., Brun, E., Doerenbecher, A., Guedj, S., Guidard, V., Karbou, F., Peuch, V.-H., El Amraoui, L., Puech, D., Genthon, C., Picard, G., Town, M., Hertzog, A., Vial, F., Cocquerez, P., Cohn, S., Hock, T., Fox, J., Cole, H., Parsons, D., Powers, J., Romberg, K., Van Andel, J., Deshler, T., Mercer, J., Haase, J., Avallone, L., Kalnajs, L., Mechoso, C., Tangborn, A., Pellegrini, A., Frenot, Y., Thepaut, J.-N., McNally, A., Balsamo, G., and Steinle, P.: The Concordiasi project in Antarctica, B. Am. Meteorol. Soc., 91, 69–86, https://doi.org/10.1175/2009BAMS2764.1, 2012.
Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, J. Geophys. Res., 108, 4116, https://doi.org/10.1029/2002JD002299, 2003.
Scannell, C., Hurtmans, D., Boynard, A., Hadji-Lazaro, J., George, M., Delcloo, A., Tuinder, O., Coheur, P.-F., and Clerbaux, C.: Antarctic ozone hole as observed by IASI/MetOp for 2008–2010, Atmos. Meas. Tech., 5, 123–139, https://doi.org/10.5194/amt-5-123-2012, 2012.
Vincensini, A., Bouchard, A., Rabier, F., Guidard, V., Fourrié, N., and Traullé, O.: IASI Retrievals Over Concordia Within the Framework of the Concordiasi Program in Antarctica, IEEE T. Geosci. Remote, 50, 2923–2933, https://doi.org/10.1109/TGRS.2011.2177467, 2012.
Wespes, C., Emmons, L., Edwards, D. P., Hannigan, J., Hurtmans, D., Saunois, M., Coheur, P.-F., Clerbaux, C., Coffey, M. T., Batchelor, R. L., Lindenmaier, R., Strong, K., Weinheimer, A. J., Nowak, J. B., Ryerson, T. B., Crounse, J. D., and Wennberg, P. O.: Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning, Atmos. Chem. Phys., 12, 237–259, https://doi.org/10.5194/acp-12-237-2012, 2012.
WMO: Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report No. 52, Geneva, 2011.