Articles | Volume 7, issue 12
https://doi.org/10.5194/amt-7-4185-2014
https://doi.org/10.5194/amt-7-4185-2014
Research article
 | 
05 Dec 2014
Research article |  | 05 Dec 2014

Automatic cloud top height determination in mountainous areas using a cost-effective time-lapse camera system

H. M. Schulz, S.-C. Chang, B. Thies, and J. Bendix

Related authors

Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach
Hans Martin Schulz, Boris Thies, Shih-Chieh Chang, and Jörg Bendix
Atmos. Meas. Tech., 9, 1135–1152, https://doi.org/10.5194/amt-9-1135-2016,https://doi.org/10.5194/amt-9-1135-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023,https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023,https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Optimizing cloud motion estimation on the edge with phase correlation and optical flow
Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis
Atmos. Meas. Tech., 16, 1195–1209, https://doi.org/10.5194/amt-16-1195-2023,https://doi.org/10.5194/amt-16-1195-2023, 2023
Short summary
A semi-Lagrangian method for detecting and tracking deep convective clouds in geostationary satellite observations
William K. Jones, Matthew W. Christensen, and Philip Stier
Atmos. Meas. Tech., 16, 1043–1059, https://doi.org/10.5194/amt-16-1043-2023,https://doi.org/10.5194/amt-16-1043-2023, 2023
Short summary
The CHROMA cloud-top pressure retrieval algorithm for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023,https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary

Cited articles

Abeles, P.: BoofCV, available at: http://boofcv.org/ (last access: 1 December 2014), 2012.
Bendix, J., Rollenbeck, R., Göttlicher, D., Nauss, T., and Fabian, P.: Seasonality and diurnal pattern of very low clouds in a deeply incised valley of the eastern tropical Andes (South Ecuador) as observed by a cost-effective webcam system, Meteorol. Appl., 15, 281–291, 2008.
Bruijnzeel, L. A., Mulligan, M., and Scatena, F. N.: Hydrometeorology of tropical montane cloud forests: Emerging patterns, Hydrol. Process., 25, 465–498, 2011.
Burger, W. and Burge, M. J.: Digital Image Processing: An algorithmic introduction using Java. Springer Science + Business Media, New York, USA, 2008.
Cermak, J. and Bendix, J.: Detecting ground fog from space – a microphysics-based approach, Int. J. Remote Sens., 32, 3345–3371, 2011.
Download
Short summary
A new method is presented for the determination of cloud top heights using the footage of a time-lapse camera that is placed above a frequently occurring cloud layer in a mountain valley. Contact points between cloud tops and underlying terrain are automatically detected in the camera image based on differences in the brightness, texture and movement of cloudy and non-cloudy areas. The height of the detected cloud top positions is determined by comparison with a digital elevation model project.