Articles | Volume 7, issue 12
https://doi.org/10.5194/amt-7-4185-2014
https://doi.org/10.5194/amt-7-4185-2014
Research article
 | 
05 Dec 2014
Research article |  | 05 Dec 2014

Automatic cloud top height determination in mountainous areas using a cost-effective time-lapse camera system

H. M. Schulz, S.-C. Chang, B. Thies, and J. Bendix

Related authors

Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach
Hans Martin Schulz, Boris Thies, Shih-Chieh Chang, and Jörg Bendix
Atmos. Meas. Tech., 9, 1135–1152, https://doi.org/10.5194/amt-9-1135-2016,https://doi.org/10.5194/amt-9-1135-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024,https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024,https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Bayesian cloud-top phase determination for Meteosat Second Generation
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024,https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary

Cited articles

Abeles, P.: BoofCV, available at: http://boofcv.org/ (last access: 1 December 2014), 2012.
Bendix, J., Rollenbeck, R., Göttlicher, D., Nauss, T., and Fabian, P.: Seasonality and diurnal pattern of very low clouds in a deeply incised valley of the eastern tropical Andes (South Ecuador) as observed by a cost-effective webcam system, Meteorol. Appl., 15, 281–291, 2008.
Bruijnzeel, L. A., Mulligan, M., and Scatena, F. N.: Hydrometeorology of tropical montane cloud forests: Emerging patterns, Hydrol. Process., 25, 465–498, 2011.
Burger, W. and Burge, M. J.: Digital Image Processing: An algorithmic introduction using Java. Springer Science + Business Media, New York, USA, 2008.
Cermak, J. and Bendix, J.: Detecting ground fog from space – a microphysics-based approach, Int. J. Remote Sens., 32, 3345–3371, 2011.
Download
Short summary
A new method is presented for the determination of cloud top heights using the footage of a time-lapse camera that is placed above a frequently occurring cloud layer in a mountain valley. Contact points between cloud tops and underlying terrain are automatically detected in the camera image based on differences in the brightness, texture and movement of cloudy and non-cloudy areas. The height of the detected cloud top positions is determined by comparison with a digital elevation model project.