Articles | Volume 8, issue 1
Atmos. Meas. Tech., 8, 171–182, 2015
https://doi.org/10.5194/amt-8-171-2015

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 8, 171–182, 2015
https://doi.org/10.5194/amt-8-171-2015

Research article 12 Jan 2015

Research article | 12 Jan 2015

Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance

C. Y. Lin et al.

Related authors

Electron density profiles probed by radio occultation of FORMOSAT-7/COSMIC-2 at 520 and 800 km altitude
J. Y. Liu, C. Y. Lin, and H. F. Tsai
Atmos. Meas. Tech., 8, 3069–3074, https://doi.org/10.5194/amt-8-3069-2015,https://doi.org/10.5194/amt-8-3069-2015, 2015

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021,https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021,https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899, https://doi.org/10.5194/amt-13-6889-2020,https://doi.org/10.5194/amt-13-6889-2020, 2020
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020,https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary

Cited articles

Araujo-Pradere, E. A., Fuller-Rowell, T. J., Spencer, P. S. J., and Minter, C. F.: Differential validation of the USTEC model, Radio Sci., 42, RS3016, https://doi.org/10.1029/2006RS003459, 2007.
Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., and Ware, R., GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, 1992.
Bilitza, D.: International Reference Ionosphere – Status 1995/96, Adv. Space Res., 20, 1751–1754, 1997.
Bust, G. S., Garner, T. W., and Gaussiran II, T. L.: Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm, J. Geophys. Res., 109, A11312, https://doi.org/10.1029/2003JA010234, 2004.
Bust, G. S., Crowley, G., Garner, T. W., Gaussiran II, T. L., Meggs, R. W., Mitchell, C. N., Spencer, P. S. J., Yin, P., and Zapfe, B.: Four-dimensional GPS imaging of space weather storms, Space Weather, 5, S02003, https://doi.org/10.1029/2006SW000237, 2007.
Download
Short summary
This study presents a new approach to assimilate FORMOSAT-3/COSMIC radio occultation (RO) slant total electron content (TEC) data as well as ground-based GPS slant TEC data into the International Reference Ionosphere to reconstruct 3-D ionospheric election density structure. Our new ionospheric data assimilation model that employs the location-dependent background model error covariance outperforms the earlier assimilation model with the location-independent background model error covariance.