Articles | Volume 8, issue 6
https://doi.org/10.5194/amt-8-2251-2015
https://doi.org/10.5194/amt-8-2251-2015
Research article
 | 
03 Jun 2015
Research article |  | 03 Jun 2015

An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial

E. Päschke, R. Leinweber, and V. Lehmann

Related authors

Comparing triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024,https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024,https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Towards improved turbulence estimation with Doppler wind lidar velocity-azimuth display (VAD) scans
Norman Wildmann, Eileen Päschke, Anke Roiger, and Christian Mallaun
Atmos. Meas. Tech., 13, 4141–4158, https://doi.org/10.5194/amt-13-4141-2020,https://doi.org/10.5194/amt-13-4141-2020, 2020

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer
Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-868,https://doi.org/10.5194/egusphere-2024-868, 2024
Short summary

Cited articles

Arras, K. O.: An Introduction To Error Propagation: Derivation, Meaning and Examples of Equation CY = FX CX FTX, ETH-Zürich, Technical Report No. EPFL-ASL-TR-98-01 R3, https://doi.org/10.3929/ethz-a-010113668, (last access: 11 november 2014), 1998.
Atlas, D.: Radar in Meteorology, American Meteorological Society, 45 Beacon Street, Boston, MA 02176, 1990.
Banakh, V. and Smalikho, I.: Coherent Doppler Wind Lidars in a Turbulent Atmosphere, Artech House Publishers, 2013.
Belsley, D.: A guide to using the collinearity diagnostics, Computer Science in Economics and Management, 4, 33–50, 1991.
Belsley, D., Kuh, E., and Welsch, R. E.: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, John Wiley & Sons, Inc., Hoboken, New Jersey, 1980.