Articles | Volume 8, issue 1
https://doi.org/10.5194/amt-8-315-2015
https://doi.org/10.5194/amt-8-315-2015
Research article
 | 
14 Jan 2015
Research article |  | 14 Jan 2015

Forecast indices from a ground-based microwave radiometer for operational meteorology

D. Cimini, M. Nelson, J. Güldner, and R. Ware

Related authors

Atmospheric stability from microwave radiometer observations for on/offshore wind energy applications
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-186,https://doi.org/10.5194/amt-2024-186, 2024
Preprint under review for AMT
Short summary
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024,https://doi.org/10.5194/amt-17-4957-2024, 2024
Short summary
Uncertainty in simulated brightness temperature due to sensitivity to atmospheric gas spectroscopic parameters from the centimeter- to submillimeter-wave range
Donatello Gallucci, Domenico Cimini, Emma Turner, Stuart Fox, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Vinia Mattioli, Salvatore Larosa, and Filomena Romano
Atmos. Chem. Phys., 24, 7283–7308, https://doi.org/10.5194/acp-24-7283-2024,https://doi.org/10.5194/acp-24-7283-2024, 2024
Short summary
PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024,https://doi.org/10.5194/gmd-17-2053-2024, 2024
Short summary
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024,https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Enhanced Quantitative Precipitation Estimation (QPE) through the opportunistic use of Ku TV-sat links via a Dual-Channel Procedure
Louise Gelbart, Laurent Barthès, François Mercier-Tigrine, Aymeric Chazottes, and Cecile Mallet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-88,https://doi.org/10.5194/amt-2024-88, 2024
Revised manuscript accepted for AMT
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary

Cited articles

American Meteorological Society Glossary of Meteorology (AMS): available at: http://glossary.ametsoc.org/wiki/Main_Page, last access: 6 November 2013.
Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.: Thermodynamic indices for forecasting thunderstorms in southern Sweden, Meteorol. Mag., 116, 141–146, 1989.
Atkins, N. T. and Wakimoto, R. M.: Wet microburst activity over the southeastern United States: Implications for Forecasting, Weather Forecast., 6, 470–482, 1991.
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.
Chan, P. W.: Performance and application of a multiwavelength, ground-based microwave radiometer in intense convective weather, Meteorol. Z., 18, 253–265, 2009.
Download
Short summary
Forecast indices commonly used in operational meteorology can be computed from temperature and humidity profiles retrieved from a ground-based microwave radiometer. The values of radiometer-derived forecast indices agree well with values computed from radiosondes (correlation usually above 0.8). Radiometer-derived forecast indices offer the advantage (with respect to radiosondes) of nearly continuous data, capturing the entire diurnal cycle and providing fresh and timely data to forecasters.