Articles | Volume 8, issue 1
Atmos. Meas. Tech., 8, 315–333, 2015
https://doi.org/10.5194/amt-8-315-2015
Atmos. Meas. Tech., 8, 315–333, 2015
https://doi.org/10.5194/amt-8-315-2015

Research article 14 Jan 2015

Research article | 14 Jan 2015

Forecast indices from a ground-based microwave radiometer for operational meteorology

D. Cimini et al.

Related authors

Improving atmospheric path attenuation estimates for radio propagation applications by microwave radiometric profiling
Ayham Alyosef, Domenico Cimini, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Marianna Biscarini, Luca Milani, Antonio Martellucci, Sabrina Gentile, Saverio T. Nilo, Francesco Di Paola, Ayman Alkhateeb, and Filomena Romano
Atmos. Meas. Tech., 14, 2737–2748, https://doi.org/10.5194/amt-14-2737-2021,https://doi.org/10.5194/amt-14-2737-2021, 2021
Short summary
Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020,https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019,https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals
Domenico Cimini, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Maksim A. Koshelev, and Filomena Romano
Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018,https://doi.org/10.5194/acp-18-15231-2018, 2018
Short summary
Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017,https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia
Gizachew Kabite Wedajo, Misgana Kebede Muleta, and Berhan Gessesse Awoke
Atmos. Meas. Tech., 14, 2299–2316, https://doi.org/10.5194/amt-14-2299-2021,https://doi.org/10.5194/amt-14-2299-2021, 2021
Short summary
A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw
Steven Knoop, Fred C. Bosveld, Marijn J. de Haij, and Arnoud Apituley
Atmos. Meas. Tech., 14, 2219–2235, https://doi.org/10.5194/amt-14-2219-2021,https://doi.org/10.5194/amt-14-2219-2021, 2021
Short summary
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021,https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary
Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021,https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Flywheel calibration of a continuous-wave coherent Doppler wind lidar
Anders Tegtmeier Pedersen and Michael Courtney
Atmos. Meas. Tech., 14, 889–903, https://doi.org/10.5194/amt-14-889-2021,https://doi.org/10.5194/amt-14-889-2021, 2021
Short summary

Cited articles

American Meteorological Society Glossary of Meteorology (AMS): available at: http://glossary.ametsoc.org/wiki/Main_Page, last access: 6 November 2013.
Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.: Thermodynamic indices for forecasting thunderstorms in southern Sweden, Meteorol. Mag., 116, 141–146, 1989.
Atkins, N. T. and Wakimoto, R. M.: Wet microburst activity over the southeastern United States: Implications for Forecasting, Weather Forecast., 6, 470–482, 1991.
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013.
Chan, P. W.: Performance and application of a multiwavelength, ground-based microwave radiometer in intense convective weather, Meteorol. Z., 18, 253–265, 2009.
Download
Short summary
Forecast indices commonly used in operational meteorology can be computed from temperature and humidity profiles retrieved from a ground-based microwave radiometer. The values of radiometer-derived forecast indices agree well with values computed from radiosondes (correlation usually above 0.8). Radiometer-derived forecast indices offer the advantage (with respect to radiosondes) of nearly continuous data, capturing the entire diurnal cycle and providing fresh and timely data to forecasters.