Articles | Volume 8, issue 10
Atmos. Meas. Tech., 8, 3985–4000, 2015
https://doi.org/10.5194/amt-8-3985-2015
Atmos. Meas. Tech., 8, 3985–4000, 2015
https://doi.org/10.5194/amt-8-3985-2015

Research article 01 Oct 2015

Research article | 01 Oct 2015

Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments

D. R. L. Dufton and C. G. Collier

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021,https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021,https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899, https://doi.org/10.5194/amt-13-6889-2020,https://doi.org/10.5194/amt-13-6889-2020, 2020
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020,https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary

Cited articles

Bachmann, S. and Zrnić, D. S.: Spectral density of polarimetric variables separating biological scatterers in the VAD display, J. Atmos. Ocean. Tech., 24, 1186–1198, 2007.
Balakrishnan, N. and Zrnić, D. S.: Use of polarization to characterize precipitation and discriminate large hail, J. Atmos. Sci., 47, 1525–1540, 1990.
Bennett, L.: Scan data from NCAS mobile X-band radar. NCAS, British Atmospheric Data Centre, available at: http://catalogue.ceda.ac.uk/uuid/4bb383b7d6ca421bbedd57b8097d5664, last access: 14 April, 2015.
Berenguer, M., Sempere-Torres, D.,Corral, C., and Sánchez-Diezma, R.: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans, J. Atmos. Ocean. Tech., 23, 1157–1180, 2006.
Blyth, A. M., Bennett, L. J., and Collier, C. G.: High-resolution observations of precipitation from cumulonimbus clouds, Meteorol. Appl., 22, 75–89, 2015.
Download
Short summary
This paper describes a radar echo classification scheme, used to identify and remove non-meteorlogical echoes from X-band radar data. The classifier uses fuzzy logic to incorporate multiple radar moments, including linear texture fields, into the decision scheme. The scheme is trained on a limited subset of data from a short field deployment. The feasibility of the scheme is then demonstrated with a range of examples from two field deployments in the UK.