Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 11
Atmos. Meas. Tech., 8, 4993–5007, 2015
https://doi.org/10.5194/amt-8-4993-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 4993–5007, 2015
https://doi.org/10.5194/amt-8-4993-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Nov 2015

Research article | 30 Nov 2015

Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

P. Achtert et al.

Related authors

Location controls the findings of ground-based PSC observations
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-930,https://doi.org/10.5194/acp-2020-930, 2020
Revised manuscript accepted for ACP
Short summary
Meteorological and cloud conditions during the Arctic Ocean 2018 expedition
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, and Ryan Neely III
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-219,https://doi.org/10.5194/acp-2020-219, 2020
Revised manuscript accepted for ACP
Short summary
Properties of Arctic liquid and mixed phase clouds from ship-borne Cloudnet observations during ACSE 2014
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-56,https://doi.org/10.5194/acp-2020-56, 2020
Revised manuscript accepted for ACP
Short summary
An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016,https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Long-term lidar observations of wintertime gravity wave activity over northern Sweden
B. Ehard, P. Achtert, and J. Gumbel
Ann. Geophys., 32, 1395–1405, https://doi.org/10.5194/angeo-32-1395-2014,https://doi.org/10.5194/angeo-32-1395-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Wuhan MST radar: technical features and validation of wind observations
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020,https://doi.org/10.5194/amt-13-5697-2020, 2020
Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX)
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020,https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
First observations of the McMurdo–South Pole oblique ionospheric HF channel
Alex T. Chartier, Juha Vierinen, and Geonhwa Jee
Atmos. Meas. Tech., 13, 3023–3031, https://doi.org/10.5194/amt-13-3023-2020,https://doi.org/10.5194/amt-13-3023-2020, 2020
Short summary
Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry
Alexander V. Rodin, Dmitry V. Churbanov, Sergei G. Zenevich, Artem Y. Klimchuk, Vladimir M. Semenov, Maxim V. Spiridonov, and Iskander S. Gazizov
Atmos. Meas. Tech., 13, 2299–2308, https://doi.org/10.5194/amt-13-2299-2020,https://doi.org/10.5194/amt-13-2299-2020, 2020
Short summary
Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow
Kuijun Wu, Weiwei He, Yutao Feng, Yuanhui Xiong, and Faquan Li
Atmos. Meas. Tech., 13, 1817–1824, https://doi.org/10.5194/amt-13-1817-2020,https://doi.org/10.5194/amt-13-1817-2020, 2020
Short summary

Cited articles

Barlow, J. F., Dunbar, T. M., Nemitz, E. G., Wood, C. R., Gallagher, M. W., Davies, F., O'Connor, E., and Harrison, R. M.: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys., 11, 2111–2125, https://doi.org/10.5194/acp-11-2111-2011, 2011.
Birch, C. E., Brooks, I. M., Tjernström, M., Shupe, M. D., Mauritsen, T., Sedlar, J., Lock, A. P., Earnshaw, P., Persson, P. O. G., Milton, S. F., and Leck, C.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012.
Brooks, I. M.: Spatially distributed measurements of platform motion for the correction of ship-based turbulent fluxes, J. Atmos. Ocean. Tech., 25, 2007–2017, 2008.
Publications Copernicus
Download
Short summary
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014. Ship-motion effects were compensated by combining a commercial Doppler lidar with a custom-made motion-stabilisation platform. This enables the retrieval of wind profiles in the Arctic boundary layer with uncertainties comparable to land-based lidar measurements and standard radiosondes. The presented set-up has the potential to facilitate continuous ship-based wind profile measurements over the oceans.
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014....
Citation