Articles | Volume 8, issue 11
https://doi.org/10.5194/amt-8-4993-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-4993-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
I. M. Brooks
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
B. J. Brooks
National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
B. I. Moat
National Oceanography Centre, Southampton, UK
J. Prytherch
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
P. O. G. Persson
Cooperative Institute for Research in Environmental Sciences, University of Colorado and NOAA-Earth System Research Laboratory, Boulder, CO, USA
M. Tjernström
Department of Meteorology and the Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2024-2988, https://doi.org/10.5194/egusphere-2024-2988, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain understudied. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature and humidity profiles. The model also struggles to capture the observed cloud phase, the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
B. Ehard, P. Achtert, and J. Gumbel
Ann. Geophys., 32, 1395–1405, https://doi.org/10.5194/angeo-32-1395-2014, https://doi.org/10.5194/angeo-32-1395-2014, 2014
W. Reid, P. Achtert, N. Ivchenko, P. Magnusson, T. Kuremyr, V. Shepenkov, and G. Tibert
Atmos. Meas. Tech., 6, 777–785, https://doi.org/10.5194/amt-6-777-2013, https://doi.org/10.5194/amt-6-777-2013, 2013
P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel
Atmos. Meas. Tech., 6, 91–98, https://doi.org/10.5194/amt-6-91-2013, https://doi.org/10.5194/amt-6-91-2013, 2013
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2024-2988, https://doi.org/10.5194/egusphere-2024-2988, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain understudied. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature and humidity profiles. The model also struggles to capture the observed cloud phase, the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Ines Bulatovic, Julien Savre, Michael Tjernström, Caroline Leck, and Annica M. L. Ekman
Atmos. Chem. Phys., 23, 7033–7055, https://doi.org/10.5194/acp-23-7033-2023, https://doi.org/10.5194/acp-23-7033-2023, 2023
Short summary
Short summary
We use numerical modeling with detailed cloud microphysics to investigate a low-altitude cloud system consisting of two cloud layers – a type of cloud situation which was commonly observed during the summer of 2018 in the central Arctic (north of 80° N). The model generally reproduces the observed cloud layers and the thermodynamic structure of the lower atmosphere well. The cloud system is maintained unless there are low aerosol number concentrations or high large-scale wind speeds.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022, https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Short summary
In winter when solar radiation is absent in the Arctic, the poleward transport of heat and moisture into the high Arctic becomes the main contribution of Arctic warming. Over completely frozen ocean sectors, total surface energy budget is dominated by net long-wave heat, while over the Barents Sea, with an open ocean to the south, total net surface energy budget is dominated by the surface turbulent heat.
Helen Czerski, Ian M. Brooks, Steve Gunn, Robin Pascal, Adrian Matei, and Byron Blomquist
Ocean Sci., 18, 565–586, https://doi.org/10.5194/os-18-565-2022, https://doi.org/10.5194/os-18-565-2022, 2022
Short summary
Short summary
The bubbles formed by breaking waves speed up the movement of gases like carbon dioxide and oxygen between the atmosphere and the ocean. Understanding where these gases go is an important part of understanding Earth's climate. In this paper we describe measurements of the bubbles close to the ocean surface during big storms in the North Atlantic. We observed small bubbles collecting in distinctive patterns which help us to understand the contribution they make to the ocean breathing.
Helen Czerski, Ian M. Brooks, Steve Gunn, Robin Pascal, Adrian Matei, and Byron Blomquist
Ocean Sci., 18, 587–608, https://doi.org/10.5194/os-18-587-2022, https://doi.org/10.5194/os-18-587-2022, 2022
Short summary
Short summary
The bubbles formed by breaking waves at the ocean surface are important because they are thought to speed up the movement of gases like carbon dioxide and oxygen between the atmosphere and ocean. We collected data on the bubbles in the top few metres of the ocean which were created by storms in the North Atlantic. The focus in this paper is the bubble sizes and their position in the water. We saw that there are very predictable patterns and set out what happens to bubbles after a wave breaks.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Tiina Nygård, Michael Tjernström, and Tuomas Naakka
Weather Clim. Dynam., 2, 1263–1282, https://doi.org/10.5194/wcd-2-1263-2021, https://doi.org/10.5194/wcd-2-1263-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the Arctic atmosphere in winter are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. The results show that the influence of different large-scale flows on temperature and humidity profiles must be viewed as a progressing set of processes. Within the Arctic, there are notable regional differences in how large-scale flows affect the temperature and specific humidity profiles.
Marilena Oltmanns, N. Penny Holliday, James Screen, D. Gwyn Evans, Simon A. Josey, Sheldon Bacon, and Ben I. Moat
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-79, https://doi.org/10.5194/wcd-2021-79, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is currently warming twice as fast as the global average. This results in enhanced melting and thus freshwater releases into the North Atlantic. Using a combination of observations and models, we show that atmosphere-ocean feedbacks initiated by freshwater releases into the North Atlantic lead to warmer and drier weather over Europe in subsequent summers. The existence of this dynamical link suggests that European summer weather can potentially be predicted months to years in advance.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Alejandra Sanchez-Franks, Eleanor Frajka-Williams, Ben I. Moat, and David A. Smeed
Ocean Sci., 17, 1321–1340, https://doi.org/10.5194/os-17-1321-2021, https://doi.org/10.5194/os-17-1321-2021, 2021
Short summary
Short summary
In the North Atlantic, ocean currents carry warm surface waters northward and return cooler deep waters southward. This type of ocean circulation, known as overturning, is important for the Earth’s climate. This overturning has been measured using a mooring array at 26° N in the North Atlantic since 2004. Here we use these mooring data and global satellite data to produce a new method for monitoring the overturning over longer timescales, which could potentially be applied to different latitudes.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy
Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021, https://doi.org/10.5194/os-17-285-2021, 2021
Short summary
Short summary
The RAPID array has observed the Atlantic meridional overturning circulation (AMOC) since 2004, but the AMOC was directly calculated only five times from 1957–2004. Here we create a statistical regression model from RAPID data, relating AMOC changes to density changes within the different water masses at 26° N, and apply it to historical hydrographic data. The resulting 1981–2016 record shows that the AMOC from 2008–2012 was its weakest since the mid-1980s, but it shows no overall decline.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Ben I. Moat, David A. Smeed, Eleanor Frajka-Williams, Damien G. Desbruyères, Claudie Beaulieu, William E. Johns, Darren Rayner, Alejandra Sanchez-Franks, Molly O. Baringer, Denis Volkov, Laura C. Jackson, and Harry L. Bryden
Ocean Sci., 16, 863–874, https://doi.org/10.5194/os-16-863-2020, https://doi.org/10.5194/os-16-863-2020, 2020
Short summary
Short summary
The RAPID 26° N array has been measuring the Atlantic meridional overturning circulation (AMOC) since 2004. Since 2009 the AMOC has, compared with previous years, been in a low state. In 2013–2015, in the northern North Atlantic, strong cooling was observed in the ocean and anticipated to intensify the strength of the AMOC some years later. Here, we analyse the latest results from 26° N and conclude that while the AMOC has increased since 2009, this increase is not statistically significant.
Grace C. E. Porter, Sebastien N. F. Sikora, Michael P. Adams, Ulrike Proske, Alexander D. Harrison, Mark D. Tarn, Ian M. Brooks, and Benjamin J. Murray
Atmos. Meas. Tech., 13, 2905–2921, https://doi.org/10.5194/amt-13-2905-2020, https://doi.org/10.5194/amt-13-2905-2020, 2020
Short summary
Short summary
Ice-nucleating particles affect cloud development, lifetime, and radiative properties. Hence it is important to know the abundance of INPs throughout the atmosphere. Here we present the development and application of a radio-controlled payload capable of collecting size-resolved aerosol from a tethered balloon for the primary purpose of offline INP analysis. Test data are presented from four locations: southern Finland, northern England, Svalbard, and southern England.
Markus M. Frey, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Xin Yang, Anna E. Jones, Michelle G. Nerentorp Mastromonaco, David H. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 20, 2549–2578, https://doi.org/10.5194/acp-20-2549-2020, https://doi.org/10.5194/acp-20-2549-2020, 2020
Short summary
Short summary
A winter sea ice expedition to Antarctica provided the first direct observations of sea salt aerosol (SSA) production during snow storms above sea ice, thereby validating a model hypothesis to account for winter time SSA maxima in Antarctica not explained otherwise. Defining SSA sources is important given the critical roles that aerosol plays for climate, for air quality and as a potential ice core proxy for sea ice conditions in the past.
Yang Liu, Jisk Attema, Ben Moat, and Wilco Hazeleger
Earth Syst. Dynam., 11, 77–96, https://doi.org/10.5194/esd-11-77-2020, https://doi.org/10.5194/esd-11-77-2020, 2020
Short summary
Short summary
Poleward meridional energy transport (MET) has significant impact on the climate in the Arctic. In this study, we quantify and intercompare MET at subpolar latitudes from six reanalysis data sets. The results indicate that the spatial distribution and temporal variations of MET differ substantially among the reanalysis data sets. Our study suggests that the MET estimated from reanalyses is useful for the evaluation of energy transports but should be used with great care.
Mingxi Yang, Sarah J. Norris, Thomas G. Bell, and Ian M. Brooks
Atmos. Chem. Phys., 19, 15271–15284, https://doi.org/10.5194/acp-19-15271-2019, https://doi.org/10.5194/acp-19-15271-2019, 2019
Short summary
Short summary
This work reports direct measurements of sea spray fluxes from a coastal site in the UK, which are relevant for atmospheric chemistry as well as coastal air quality. Sea spray fluxes from this location are roughly an order of magnitude greater than over the open ocean at similar wind conditions, comparable to previous coastal measurements. Unlike previous open ocean measurements that are largely wind speed dependent, we find that sea spray fluxes near the coast depend more strongly on waves.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Xin Yang, Markus M. Frey, Rachael H. Rhodes, Sarah J. Norris, Ian M. Brooks, Philip S. Anderson, Kouichi Nishimura, Anna E. Jones, and Eric W. Wolff
Atmos. Chem. Phys., 19, 8407–8424, https://doi.org/10.5194/acp-19-8407-2019, https://doi.org/10.5194/acp-19-8407-2019, 2019
Short summary
Short summary
This is a comprehensive model–data comparison aiming to evaluate the proposed mechanism of sea salt aerosol (SSA) production from blowing snow on sea ice. Some key parameters such as snow salinity and blowing-snow size distribution were constrained by data collected in the Weddell Sea. The good agreement between modelled SSA and the cruise data strongly indicates that sea ice surface is a large SSA source in polar regions, a process which has not been considered in current climate models.
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019, https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Short summary
This paper presents the first performance assessment during a field campaign of a new reusable radiosonde: the Windsond S1H2. The reuse feature of the S1H2 requires evaluation of the data alteration due to sonde reuse in addition to performance and reproducibility assessments. A comparison with the Vaisala RS41-SG, a well-proven system, shows the potential of the S1H2, with no major performance degradation arising from S1H2 sonde reuse but shows the need for improving the S1H2 GPS system.
Ryan R. Neely III, Lindsay Bennett, Alan Blyth, Chris Collier, David Dufton, James Groves, Daniel Walker, Chris Walden, John Bradford, Barbara Brooks, Freya I. Addison, John Nicol, and Ben Pickering
Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018, https://doi.org/10.5194/amt-11-6481-2018, 2018
Short summary
Short summary
Mobile X-band radars are widely used by atmospheric scientists to observe clouds and make estimates of rainfall. Here we describe the National Centre for Atmospheric Science's mobile X-band dual-polarisation Doppler radar (NXPol). NXPol is the first radar of its kind in the UK. To demonstrate the radar’s capabilities, we present examples of its use in three field campaigns as well as an example from ongoing observations at the National Facility for Atmospheric and Radio Research.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Norbert Kalthoff, Fabienne Lohou, Barbara Brooks, Gbenga Jegede, Bianca Adler, Karmen Babić, Cheikh Dione, Adewale Ajao, Leonard K. Amekudzi, Jeffrey N. A. Aryee, Muritala Ayoola, Geoffrey Bessardon, Sylvester K. Danuor, Jan Handwerker, Martin Kohler, Marie Lothon, Xabier Pedruzo-Bagazgoitia, Victoria Smith, Lukman Sunmonu, Andreas Wieser, Andreas H. Fink, and Peter Knippertz
Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018, https://doi.org/10.5194/acp-18-2913-2018, 2018
Short summary
Short summary
Extended low-level stratus clouds (LLC) form frequently in southern West Africa during the night-time and persist long into the next day. They affect the radiation budget, atmospheric boundary-layer (BL) evolution and regional climate. The relevant processes governing their formation and dissolution are not fully understood. Thus, a field campaign was conducted in summer 2016, which provided a comprehensive data set for process studies, specifically of interactions between LLC and BL conditions.
Katharina Loewe, Annica M. L. Ekman, Marco Paukert, Joseph Sedlar, Michael Tjernström, and Corinna Hoose
Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017, https://doi.org/10.5194/acp-17-6693-2017, 2017
Short summary
Short summary
Processes that affect Arctic mixed-phase cloud life cycle are extremely important for the surface energy budget. Three different sensitivity experiments mimic changes in the advection of air masses with different thermodynamic profiles and aerosol properties to find the potential mechanisms leading to the dissipation of the cloud. We found that the reduction of the cloud droplet number concentration was likely the primary contributor to the dissipation of the observed Arctic mixed-phase cloud.
Robert Marsh, Ivan D. Haigh, Stuart A. Cunningham, Mark E. Inall, Marie Porter, and Ben I. Moat
Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, https://doi.org/10.5194/os-13-315-2017, 2017
Short summary
Short summary
To the west of Britain and Ireland, a strong ocean current follows the steep slope that separates the deep Atlantic and the continental shelf. This “Slope Current” exerts an Atlantic influence on the North Sea and its ecosystems. Using a combination of computer modelling and archived data, we find that the Slope Current weakened over 1988–2007, reducing Atlantic influence on the North Sea, due to a combination of warming of the subpolar North Atlantic and weakening winds to the west of Scotland.
Mingxi Yang, John Prytherch, Elena Kozlova, Margaret J. Yelland, Deepulal Parenkat Mony, and Thomas G. Bell
Atmos. Meas. Tech., 9, 5509–5522, https://doi.org/10.5194/amt-9-5509-2016, https://doi.org/10.5194/amt-9-5509-2016, 2016
Short summary
Short summary
The exchange of the greenhouse gases carbon dioxide and methane between the ocean and the atmosphere is of critical importance for the earth's climate. Despite this, direct measurements of these fluxes are relatively scarce, especially for methane, in large part due to instrumental challenges. In this paper, we evaluate the performance of two of the latest carbon dioxide and methane flux analysers. We also compare their detection limits to predicted air–sea fluxes of these gases.
Mingxi Yang, Thomas G. Bell, Frances E. Hopkins, Vassilis Kitidis, Pierre W. Cazenave, Philip D. Nightingale, Margaret J. Yelland, Robin W. Pascal, John Prytherch, Ian M. Brooks, and Timothy J. Smyth
Atmos. Chem. Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, https://doi.org/10.5194/acp-16-5745-2016, 2016
Short summary
Short summary
Coastal seas are sources of methane in the atmosphere and can fluctuate from emitting to absorbing carbon dioxide. Direct air–sea transport measurements of these two greenhouse gases in near shore regions remain scarce. From a recently established coastal atmospheric station on the south-west coast of the UK, we observed that the oceanic absorption of carbon dioxide peaked during the phytoplankton bloom, while methane emission varied with the tidal cycle, likely due to an estuary influence.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
E. Frajka-Williams, C. S. Meinen, W. E. Johns, D. A. Smeed, A. Duchez, A. J. Lawrence, D. A. Cuthbertson, G. D. McCarthy, H. L. Bryden, M. O. Baringer, B. I. Moat, and D. Rayner
Ocean Sci., 12, 481–493, https://doi.org/10.5194/os-12-481-2016, https://doi.org/10.5194/os-12-481-2016, 2016
Short summary
Short summary
The ocean meridional overturning circulation (MOC) is predicted by climate models to slow down in this century, resulting in reduced transport of heat northward to mid-latitudes. At 26° N, the Atlantic MOC has been measured continuously for the past decade (2004–2014). In this paper, we discuss the 10-year record of variability, identify the origins of the continued weakening of the circulation, and discuss high-frequency (subannual) compensation between transport components.
E. Johansson, A. Devasthale, T. L'Ecuyer, A. M. L. Ekman, and M. Tjernström
Atmos. Chem. Phys., 15, 11557–11570, https://doi.org/10.5194/acp-15-11557-2015, https://doi.org/10.5194/acp-15-11557-2015, 2015
Short summary
Short summary
Both radiative and latent heat components of total diabatic heating influence Indian monsoon dynamics. This study investigates radiative component in detail, focusing on various cloud types that have largest radiative impact during summer monsoon over the Indian subcontinent. The vertical structure of radiative heating and its intra-seasonal variability is investigated with particular emphasis on the upper troposphere and lower stratosphere (UTLS) region.
J. Prytherch, M. J. Yelland, I. M. Brooks, D. J. Tupman, R. W. Pascal, B. I. Moat, and S. J. Norris
Atmos. Chem. Phys., 15, 10619–10629, https://doi.org/10.5194/acp-15-10619-2015, https://doi.org/10.5194/acp-15-10619-2015, 2015
Short summary
Short summary
Signals at scales associated with wave and platform motion are often apparent in ship-based turbulent flux measurements, but it has been uncertain whether this is due to measurement error or to wind-wave interactions. We show that the signal has a dependence on horizontal ship velocity and that removing the signal reduces the dependence of the momentum flux on the orientation of the ship to the wind. We conclude that the signal is a bias due to time-varying motion-dependent flow distortion.
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary
Short summary
During ASCOS, clouds are more frequently decoupled from the surface than coupled to it; when coupling occurs it is primary driven by the cloud. Decoupled clouds have a bimodal structure; they are either weakly or strongly decoupled from the surface; the enhancement of the decoupling is possibly due to sublimation of precipitation. Stable clouds (no cloud-driven mixing) are also observed; those are optically thin, often single-phase liquid, with no or negligible precipitation (e.g. fog).
B. Ehard, P. Achtert, and J. Gumbel
Ann. Geophys., 32, 1395–1405, https://doi.org/10.5194/angeo-32-1395-2014, https://doi.org/10.5194/angeo-32-1395-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
C. Wesslén, M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L.-S. Bai, and S.-H. Wang
Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-14-2605-2014, https://doi.org/10.5194/acp-14-2605-2014, 2014
D. A. Smeed, G. D. McCarthy, S. A. Cunningham, E. Frajka-Williams, D. Rayner, W. E. Johns, C. S. Meinen, M. O. Baringer, B. I. Moat, A. Duchez, and H. L. Bryden
Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, https://doi.org/10.5194/os-10-29-2014, 2014
G. de Boer, M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S. Boyle, M. Kelley, S. A. Klein, and M. Tjernström
Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, https://doi.org/10.5194/acp-14-427-2014, 2014
P. Kupiszewski, C. Leck, M. Tjernström, S. Sjogren, J. Sedlar, M. Graus, M. Müller, B. Brooks, E. Swietlicki, S. Norris, and A. Hansel
Atmos. Chem. Phys., 13, 12405–12431, https://doi.org/10.5194/acp-13-12405-2013, https://doi.org/10.5194/acp-13-12405-2013, 2013
M. D. Shupe, P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck
Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, https://doi.org/10.5194/acp-13-9379-2013, 2013
W. Reid, P. Achtert, N. Ivchenko, P. Magnusson, T. Kuremyr, V. Shepenkov, and G. Tibert
Atmos. Meas. Tech., 6, 777–785, https://doi.org/10.5194/amt-6-777-2013, https://doi.org/10.5194/amt-6-777-2013, 2013
S. J. Norris, I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks
Ocean Sci., 9, 133–145, https://doi.org/10.5194/os-9-133-2013, https://doi.org/10.5194/os-9-133-2013, 2013
D. A. J. Sproson, I. M. Brooks, and S. J. Norris
Atmos. Meas. Tech., 6, 323–335, https://doi.org/10.5194/amt-6-323-2013, https://doi.org/10.5194/amt-6-323-2013, 2013
P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel
Atmos. Meas. Tech., 6, 91–98, https://doi.org/10.5194/amt-6-91-2013, https://doi.org/10.5194/amt-6-91-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The GRAS-2 radio occultation mission
The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Optimization of a direct detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Advancing airborne Doppler lidar wind profiling in turbulent boundary layer flow – an LES-based optimization of traditional scanning-beam versus novel fixed-beam measurement systems
Observing atmospheric convection with dual-scanning lidars
Evaluation of error components in rainfall retrieval from collocated commercial microwave links
In-orbit cross-calibration of millimeter conically scanning spaceborne radars
The Far-Infrared Radiation Mobile Observation System (FIRMOS) for spectral characterization of the atmospheric emission
Calibrating radar wind profiler reflectivity factor using surface disdrometer observations
Pseudorandom modulation continuous-wave narrowband sodium temperature and wind lidar
Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Evaluation of the New York State Mesonet Profiler Network data
Quantification of motion-induced measurement error on floating lidar systems
Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations
Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign
Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations
Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Moderate spectral resolution solar irradiance measurements, aerosol optical depth, and solar transmission, from 360 to 1070 nm, using the refurbished rotating shadow band spectroradiometer (RSS)
Mitigation of bias sources for atmospheric temperature and humidity in the mobile Raman Weather and Aerosol Lidar (WALI)
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
ALADIN laser frequency stability and its impact on the Aeolus wind error
A compact static birefringent interferometer for the measurement of upper atmospheric winds: concept, design and lab performance
The COTUR project: remote sensing of offshore turbulence for wind energy application
Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite
Relationship between wind observation accuracy and the ascending node of the sun-synchronous orbit for the Aeolus-type spaceborne Doppler wind lidar
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Measurement characteristics of an airborne microwave temperature profiler (MTP)
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
Atmospheric observations with E-band microwave links – challenges and opportunities
Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers
Wuhan MST radar: technical features and validation of wind observations
Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX)
First observations of the McMurdo–South Pole oblique ionospheric HF channel
Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry
Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024, https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
Short summary
Soon the MetOp Second Generation (Metop-SG) series of polar orbiting meteorological satellites will be launched. On these satellites, the GRAS-2 instrument will be mounted. It will provide GNSS radio occultation measurements with unsurpassed accuracy. The occultation measurements are used routinely for numerical weather prognosis, i.e. predicting the weather. In this paper, we describe the design of this new instrument and the novel methods developed to process the data.
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024, https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Short summary
This article describes the current status of a lidar installed at ALOMAR in northern Norway. It has investigated the Arctic middle atmosphere on a climatological basis for 30 years. We discuss major upgrades of the system implemented during recent years, including methods for reliable remote operation of this complex lidar. We also show examples that illustrate the performance of the lidar during measurements at different altitude ranges and timescales.
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024, https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Short summary
The Far INfrarEd Spectrometer for Surface Emissivity, FINESSE, is designed to measure the ability of natural surfaces to emit infrared radiation. FINESSE combines a commercial instrument with custom-built optics to view a surface from different angles with complementary views of the sky. Its choice of internal components means it can cover a wide range of wavelengths, extending into the far-infrared. We characterize FINESSE’s uncertainty budget and provide examples of its measurement capability.
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024, https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Short summary
Weather radars should use lightning protection to be safe from damage, but the rods can reduce the quality of the radar measurements. This study presents three new solutions for lightning protection for weather radars and evaluates their influence on data quality. The results are compared to the current system. All tested ones have very little effect on data, and a new lightning protection system with four rods is recommended for the German Meteorological Service.
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024, https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
Short summary
In this paper, the relationship between observations from two instruments, a meteor radar and a field-widened Michelson interferometer (ERWIN) which provide complementary information on this region, is investigated. On average the ratio of ERWIN winds to meteor radar winds is ∼ 0.7. Differences between the wind observations may be caused by variations in the airglow brightness associated with dissipating gravity waves.
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024, https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
Short summary
To have better understanding of the dynamics of the lower and middle atmosphere, we installed a newly designed dual-frequency radar system that uses 53.8 MHz for near-ground to 20 km wind measurements and 35.0 MHz for 70 to 100 km wind measurements. The initial results show its good performance, along with the analysis of typical winter gravity wave activities.
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024, https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024, https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary
Short summary
Improving the monitoring capability of atmospheric turbulence can help unravel the mystery of turbulence. Based on some assumptions, scientists have proposed various detection methods. However, these assumptions limit their applicability. We abandoned these assumptions and proposed a more accurate method, revealing some new results. Our method can provide more accurate three-dimensional features of turbulence, which will have a huge driving effect on the development of turbulence.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024, https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Short summary
A novel infrared imaging instrument (OH imager) was put into operation in November 2022 at the Swedish Institute of Space Physics in Kiruna (Sweden). The OH imager is dedicated to the study of nightglow emissions coming from the hydroxyl (OH) and molecular oxygen (O2) layers in the mesopause (80–100 km). Based on a brightness ratio of two OH emission lines, the neutral temperature is estimated at around 87 km. The average daily winter temperature for the period January–April 2023 is 203±10 K.
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-41, https://doi.org/10.5194/amt-2024-41, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper presents a design of a UV wind lidar, made with a UV fiber laser and a Quadri Mach-Zehnder interferometer as a spectral analyzer, used to measure the wind in front of future low consumption aircraft. The article details the optimization of the different elements of the instrument with simulations. This paper also presents a method to optimize laser angles for determining wind direction and strength, and shows a 50 % improvement over the current angles used.
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024, https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Short summary
We present a radiance calibration method based on the comparison of measurements and radiative transfer simulations of the zenith-scattered sun radiance during twilight. Cloud-free conditions are required. The method can be applied to measurements in the filed, and no laboratory measurements are required. The accuracy is estimated to range from about 4 % at 340 nm to about 10 % at 700 nm.
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Philipp Gasch, James Kasic, Oliver Maas, and Zhien Wang
Atmos. Meas. Tech., 16, 5495–5523, https://doi.org/10.5194/amt-16-5495-2023, https://doi.org/10.5194/amt-16-5495-2023, 2023
Short summary
Short summary
This paper rethinks airborne wind measurements and investigates a new design for airborne Doppler lidar systems. Recent advances in lidar technology allow the use of multiple lidar systems with fixed viewing directions instead of a single lidar attached to a scanner. Our simulation results show that the proposed new design offers great potential for both higher accuracy and higher-resolution airborne wind measurements.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Anna Špačková, Martin Fencl, and Vojtěch Bareš
Atmos. Meas. Tech., 16, 3865–3879, https://doi.org/10.5194/amt-16-3865-2023, https://doi.org/10.5194/amt-16-3865-2023, 2023
Short summary
Short summary
Commercial microwave links as rainfall sensors have been investigated and evaluated in numerous studies with gauge-adjusted radar used for reference for rainfall observations. We evaluate collocated commercial microwave links, which are thus exposed to identical atmospheric conditions. This set-up enables the exploration of inconsistencies in observations of independent sensors using data from a real telecommunication network. The sensors are in agreement and are homogeneous in their behaviour.
Alessandro Battaglia, Filippo Emilio Scarsi, Kamil Mroz, and Anthony Illingworth
Atmos. Meas. Tech., 16, 3283–3297, https://doi.org/10.5194/amt-16-3283-2023, https://doi.org/10.5194/amt-16-3283-2023, 2023
Short summary
Short summary
Some of the new generation of cloud and precipitation spaceborne radars will adopt conical scanning. This will make some of the standard calibration techniques impractical. This work presents a methodology to cross-calibrate radars in orbits by matching the reflectivity probability density function of ice clouds observed by the to-be-calibrated and by the reference radar in quasi-coincident locations. Results show that cross-calibration within 1 dB (26 %) is feasible.
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023, https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Short summary
We successfully developed the first pseudorandom modulation continuous-wave narrowband sodium lidar (PMCW-NSL) system for simultaneous measurements of the mesopause region's temperature and wind. Based on the innovative decoded technique and algorithm for CW lidar, both the main and residual lights modulated by M-code are used and directed to the atmosphere in the vertical and eastward directions, tilted 20° from the zenith. The PMCW-NSL system can applied to airborne and space-borne purposes.
Dana L. McGuffin, Philip J. Cameron-Smith, Matthew A. Horsley, Brian J. Bauman, Wim De Vries, Denis Healy, Alex Pertica, Chris Shaffer, and Lance M. Simms
Atmos. Meas. Tech., 16, 2129–2144, https://doi.org/10.5194/amt-16-2129-2023, https://doi.org/10.5194/amt-16-2129-2023, 2023
Short summary
Short summary
This work demonstrates the viability of a remote sensing technique using nanosatellites to measure stratospheric temperature. This measurement technique can probe the stratosphere and mesosphere at a fine vertical scale around the globe unlike other high-altitude measurement techniques, which would provide an opportunity to observe atmospheric gravity waves and turbulence. We analyze observations from two satellite platforms to provide a proof of concept and characterize measurement uncertainty.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023, https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Short summary
Global Navigation Satellite System (GNSS) radio occultation (RO) remote sensing is effective for atmospheric profiling. The capability of a low-cost and scalable commercial off-the-shelf (COTS) GNSS receiver on board high-altitude balloons is tested in two campaigns. Preliminary results demonstrate high-quality refractivity observations from the COTS RO receiver, which is worth further improvement for dense atmospheric observations over a targeted region.
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Short summary
Doppler lidars and weather radars provide accurate wind measurements, with Doppler lidar usually performing better in dry weather conditions and weather radar performing better when there is precipitation. Operating both instruments together should therefore improve the overall performance. We investigate how well a co-located Doppler lidar and X-band radar perform with respect to various weather conditions, including changes in horizontal visibility, cloud altitude, and precipitation.
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022, https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Short summary
The NYS Mesonet Profiler Network is comprised of 17 profiler sites, each equipped with a Doppler lidar, microwave radiometer, and sun photometer. This study presents a multi-year, multi-station evaluation based on well-defined reference measurements. Results demonstrate robust technologies that can aid real-time weather operations and a network test bed that can be used for further expansion, evaluation, and integration of such technologies at a large scale.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Alessandro Battaglia, Paolo Martire, Eric Caubet, Laurent Phalippou, Fabrizio Stesina, Pavlos Kollias, and Anthony Illingworth
Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022, https://doi.org/10.5194/amt-15-3011-2022, 2022
Short summary
Short summary
We present an instrument simulator for a new sensor, WIVERN (WInd VElocity Radar Nephoscope), a conically scanning radar payload with Doppler capabilities, recently down-selected as one of the four candidates for the European Space Agency Earth Explorer 11 program. The mission aims at measuring horizontal winds in cloudy areas. The simulator is instrumental in the definition and consolidation of the mission requirements and the evaluation of mission performances.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Vicki Kelsey, Spencer Riley, and Kenneth Minschwaner
Atmos. Meas. Tech., 15, 1563–1576, https://doi.org/10.5194/amt-15-1563-2022, https://doi.org/10.5194/amt-15-1563-2022, 2022
Short summary
Short summary
In the interior western USA there are distances of hundreds of kilometers between weather balloon launch sites for weather forecasting. Satellite coverage can also be sparse or with poor resolution. Using infrared thermometers, clear-sky temperatures were collected and compared with data from weather balloons. A correlation between clear-sky temperatures and precipitable water measurements from weather balloons was found. This means that citizen scientists can collect data.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Joseph J. Michalsky and Peter W. Kiedron
Atmos. Meas. Tech., 15, 353–364, https://doi.org/10.5194/amt-15-353-2022, https://doi.org/10.5194/amt-15-353-2022, 2022
Short summary
Short summary
This paper describes an instrument that measures spectrally from 360 nm (ultraviolet) to 1070 nm (near-infrared) at 1002 separate wavelengths. The measurements were made every minute from the late summer of 2009 to the winter of 2014 at a site in northern Oklahoma (USA; 36.605° N, 97.486° W). Methods are described that enable the normalized transmission across the spectrum to be measured and, subsequently, used to calculate the aerosol optical depth and spectra irradiance.
Julien Totems, Patrick Chazette, and Alexandre Baron
Atmos. Meas. Tech., 14, 7525–7544, https://doi.org/10.5194/amt-14-7525-2021, https://doi.org/10.5194/amt-14-7525-2021, 2021
Short summary
Short summary
We describe in detail the design and calibration of the new Raman channels for the WALI system, going over the important sources of bias and uncertainty on retrieved temperature profiles. For the first time, their impact is investigated using horizontal shots in a homogenous atmosphere: the magnitude of the highlighted biases can be much larger than the targeted absolute accuracy of 1° C. Actual measurement errors are quantified using radiosoundings launched close to the lidar site.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Tingyu Yan, Jeffery A. Langille, William E. Ward, William A. Gault, Alan Scott, Andrew Bell, Driss Touahiri, Sheng-Hai Zheng, and Chunmin Zhang
Atmos. Meas. Tech., 14, 6213–6232, https://doi.org/10.5194/amt-14-6213-2021, https://doi.org/10.5194/amt-14-6213-2021, 2021
Short summary
Short summary
High-resolution interferometers are routinely used to measure upper atmospheric motions by measuring small Doppler shifts in spectrally isolated airglow emissions. The birefringent interferometer presented in this paper has similar capabilities as several existing state-of-the-art instruments but is smaller and less complex to construct and operate. This paper presents the measurement technique and characterization of a lab prototype and examines the performance of the instrument.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
Chuanliang Zhang, Xuejin Sun, Wen Lu, Yingni Shi, Naiying Dou, and Shaohui Li
Atmos. Meas. Tech., 14, 4787–4803, https://doi.org/10.5194/amt-14-4787-2021, https://doi.org/10.5194/amt-14-4787-2021, 2021
Short summary
Short summary
The first spaceborne doppler wind lidar (DWL) Aeolus operates on sun-synchronous dawn–dusk orbit to lower the impact of solar background radiation (SBR) on wind observation accuracy. Increased SBR leads to an increment of averaged wind observation uncertainties from 0.19 to 0.27 m s-1 comparing Aeolus and two added spaceborne DWLs operating on orbits with local ascending times of 15:00 and 12:00 LT. A quantitative design of laser pulse energy according to accuracy requirements is also proposed.
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021, https://doi.org/10.5194/amt-14-1689-2021, 2021
William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm
Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021, https://doi.org/10.5194/amt-14-1303-2021, 2021
Short summary
Short summary
We developed a wind-measuring drone with exceptional measuring accuracy and a very long flight time. Measurements are extensively validated at different levels. A comparison with a bistatic lidar reveals very small bias and RMSEs. We also present a demonstration measurement in the wake of a wind turbine. We think that our solution is a significant enhancement to existing designs, and other researchers can benefit from the details that we are giving in the paper.
Martin Fencl, Michal Dohnal, Pavel Valtr, Martin Grabner, and Vojtěch Bareš
Atmos. Meas. Tech., 13, 6559–6578, https://doi.org/10.5194/amt-13-6559-2020, https://doi.org/10.5194/amt-13-6559-2020, 2020
Short summary
Short summary
Commercial microwave links operating at E-band frequencies are increasingly being updated and are frequently replacing older infrastructure. We show that E-band microwave links are able to observe even light rainfalls, a feat practically impossible to achieve by older 15–40 GHz devices. Furthermore, water vapor retrieval may be possible from long E-band microwave links, although the efficient separation of gaseous attenuation from other signal losses will be challenging in practice.
Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang
Atmos. Meas. Tech., 13, 6521–6542, https://doi.org/10.5194/amt-13-6521-2020, https://doi.org/10.5194/amt-13-6521-2020, 2020
Short summary
Short summary
The hydroxyl radical (OH) plays a significant role in atmospheric chemical and physical reactions. The superiority and feasibility of a new satellite sensor, which consists of two spatial heterodyne spectrometers in the orthogonal layout to monitor OH in the middle and upper atmosphere, is proved by the forward model. An inversion algorithm to obtain OH concentrations based on the simulated observation data of sensors and the errors in results are also given.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020, https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
Short summary
The mechanisms linking convection and air motion are major factors in much of the uncertainty in weather prediction, but complementary measurements of these quantities are rarely taken in close proximity. These quantities are shown from the 2017 Convective Processes Experiment (CPEX), wherein cloud and vertical air motion winds derived from the APR-2 airborne Doppler radar are combined with joint Doppler wind lidar (DAWN) measurements in the aerosol-rich regions surrounding the convection.
Alex T. Chartier, Juha Vierinen, and Geonhwa Jee
Atmos. Meas. Tech., 13, 3023–3031, https://doi.org/10.5194/amt-13-3023-2020, https://doi.org/10.5194/amt-13-3023-2020, 2020
Short summary
Short summary
A novel oblique ionospheric radio sounder has been developed and demonstrated in Antarctica. The transmitter was located at McMurdo and the receiver at the South Pole (1356 km great-circle path). The system cycled through 12 frequencies each minute and recorded signal time of flight, intensity, and Doppler. This allowed for the estimation of peak ionospheric electron density, which validated well against independent data from the nearby Jang Bogo ionosonde and GPS TEC.
Alexander V. Rodin, Dmitry V. Churbanov, Sergei G. Zenevich, Artem Y. Klimchuk, Vladimir M. Semenov, Maxim V. Spiridonov, and Iskander S. Gazizov
Atmos. Meas. Tech., 13, 2299–2308, https://doi.org/10.5194/amt-13-2299-2020, https://doi.org/10.5194/amt-13-2299-2020, 2020
Short summary
Short summary
The paper presents a new technique in remote wind measurements that may potentially complement conventional aerological observations and eventually greatly improve our knowledge about our climate system, especially concerning processes related to troposphere–stratosphere coupling. The technique may be implemented at relatively low cost in various applications from meteorological observation posts to remote sensing spacecraft.
Kuijun Wu, Weiwei He, Yutao Feng, Yuanhui Xiong, and Faquan Li
Atmos. Meas. Tech., 13, 1817–1824, https://doi.org/10.5194/amt-13-1817-2020, https://doi.org/10.5194/amt-13-1817-2020, 2020
Short summary
Short summary
The 1.27 μm O2 dayglow is well-suited for remote sensing in near-space. The main goal of this paper is to discuss the effect of OH radiance on the wind and temperature measurements derived from limb-viewing observations of the O2 dayglow. It is apparent from the simulations that the presence of OH radiance as an interfering species decreases the wind and temperature accuracy at all altitudes, but this effect can be reduced considerably by improving OH radiance knowledge.
Cited articles
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry, B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma, Z., Masutami, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P., Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-measured wind profiles: the missing link in the global observing system, B. Am. Meteorol. Soc., 95, 543–564, 2014.
Barlow, J. F., Dunbar, T. M., Nemitz, E. G., Wood, C. R., Gallagher, M. W., Davies, F., O'Connor, E., and Harrison, R. M.: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys., 11, 2111–2125, https://doi.org/10.5194/acp-11-2111-2011, 2011.
Birch, C. E., Brooks, I. M., Tjernström, M., Shupe, M. D., Mauritsen, T., Sedlar, J., Lock, A. P., Earnshaw, P., Persson, P. O. G., Milton, S. F., and Leck, C.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012.
Brooks, I. M.: Spatially distributed measurements of platform motion for the correction of ship-based turbulent fluxes, J. Atmos. Ocean. Tech., 25, 2007–2017, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Drennan, W., Graber, H., Collins III, C., Herrera, A., Potter, H., Ramos, R., and Williams, N.: EASI: an air-sea interaction buoy for high winds, J. Atmos. Ocean. Tech., 31, 1397–1409, 2014.
Edson, J. B., Hinton, A. A., Prada, K. E., Hare, J. E., and Fairall, C. W.: Direct covariance flux estimates from mobile platforms at sea*, J. Atmos. Ocean. Tech., 15, 547–562, 1998.
ESA: ADM-Aeolus Science Report, available at: http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/ADM-Aeolus (last access: 18 August 2015), 2014.
Frehlich, R.: Estimation of velocity error for Doppler lidar measurements, J. Atmos. Ocean. Tech., 18, 1628–1639, 2001.
Grubbs, F. E.: Procedures for detecting outlying observations in samples, Technometrics, 11, 1–21, 1969.
Heintzenberg, J. and Leck, C.: The summer aerosol in the central Arctic 1991–2008: did it change or not?, Atmos. Chem. Phys., 12, 3969–3983, https://doi.org/10.5194/acp-12-3969-2012, 2012.
Hill, R., Brewer, W. A., and Tucker, S.: Platform-Motion Correction of Velocity Measured by Doppler Lidar, J. Atmos. Ocean. Tech., 25, 1369–1382, 2007.
Hirsikko, A., O'Connor, E. J., Komppula, M., Korhonen, K., Pfüller, A., Giannakaki, E., Wood, C. R., Bauer-Pfundstein, M., Poikonen, A., Karppinen, T., Lonka, H., Kurri, M., Heinonen, J., Moisseev, D., Asmi, E., Aaltonen, V., Nordbo, A., Rodriguez, E., Lihavainen, H., Laaksonen, A., Lehtinen, K. E. J., Laurila, T., Petäjä, T., Kulmala, M., and Viisanen, Y.: Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network, Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, 2014.
Houchi, K., Stoffelen, A., Marseille, G., and De Kloe, J.: Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model, J. Geophys. Res.-Atmos., 115, D22123, https://doi.org/10.1029/2009JD013196, 2010.
Landwehr, S., O'Sullivan, N., and Ward, B.: Direct flux measurements from mobile platforms at sea: motion and air-flow distortion corrections revisited, J. Atmos. Ocean. Tech., 32, 1163–1178, 2015.
Lane, S., Barlow, J. F., and Wood, C. R.: An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas, J. Wind Eng. Ind. Aerod., 119, 53–59, 2013.
Lannefors, H., Heintzenberg, J., and Hansson, H. C.: A comprehensive study of physical and chemical parameters of the Arctic summer aerosol; results from the Swedish expedition Ymer-80, Tellus B, 35, 40–54, 1983.
Marlton, G. J.; Harrison, R. G., Nicoll, K. A., and Williams, P. D.: Note: A balloon-borne accelerometer technique for measuring atmospheric turbulence, Rev. Sci. Instrum., 86, 016109, https://doi.org/10.1063/1.4905529, 2015.
McGillis, W. R., Edson, J. B., Hare, J. E., and Fairall, C. W.: Direct covariance air-sea CO2 fluxes, J. Geophys. Res.-Oceans, 106, 16729–16745, 2001.
Moat, B. I. and Yelland, M. J.: Going with the flow: state of the art marine meteorological measurements on the new NERC research vessel, Weather, 63, 158–159, 2008.
Moat, B. I., Yelland, M. J., Pascal, R. W., and Molland, A. F.: An overview of the airflow distortion at anemometer sites on ships, Int. J. Climatol., 25, 997–1006, 2005.
Moat, B. I., Yelland, M. J., and Molland, A. F.: Quantifying the airflow distortion over merchant ships. Part II: Application of the model results, J. Atmos. Ocean. Tech., 23, 351–360, 2006a.
Moat, B. I., Yelland, M. J., Pascal, R. W., and Molland, A. F.: Quantifying the airflow distortion over merchant ships. Part I: Validation of a CFD model, J. Atmos. Ocean. Tech., 23, 341–350, 2006b.
Norris, S. J., Brooks, I. M., Hill, M. K., Brooks, B. J., Smith, M. H., and Sproson, D. A. J.: Eddy covariance measurements of the sea spray aerosol flux over the open ocean, J. Geophys. Res.-Atmos., 117, d07210, https://doi.org/10.1029/2011JD016549, 2012.
O'Connor, E. J., Illingworth, A. J., Brooks, I. M., Westbrook, C. D., Hogan, R. J., Davies, F., and Brooks, B. J.: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements, J. Atmos. Ocean. Tech., 27, 1652–1664, 2010.
Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial, Atmos. Meas. Tech., 8, 2251–2266, 2015.
Pearson, G., Davies, F., and Collier, C.: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer, J. Atmos. Ocean. Tech., 26, 240–250, 2009.
Pichugina, Y. L., Banta, R. M., Brewer, W. A., Sandberg, S. P., and Hardesty, R. M.: Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications, J. Appl. Meteorol. Climatol., 51, 327–349, 2012.
Prytherch, J., Yelland, M. J., Brooks, I. M., Tupman, D. J., Pascal, R. W., Moat, B. I., Norris, S. J.: Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships, Atmos. Chem. Phys., 15, 10619–10629, https://doi.org/10.5194/acp-15-10619-2015, 2015.
Ricardo: VECTIS Computational Fluid Dynamics (Release 2014.2) users guide, Tech. rep., Ricardo Software Ltd., UK, available at: http://www.software.ricardo.com/support/manuals/vectis/pdfs/2014.2/VECTIS_2014.2_Manual.pdf (last access: 3 August 2015), 2014.
Schween, J. H., Hirsikko, A., Löhnert, U., and Crewell, S.: Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment, Atmos. Meas. Tech., 7, 3685–3704, 2014.
Tjernström, M., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J., Sedlar, J., Achtert, P., Brooks, B. J., Johnston, P. E., Sotiropoulou, G., and Wolfe, D.: Warm-air advection, air mass transformation and fog causes rapid ice melt, Geophys. Res. Lett., 42, 5594–5602, 2015.
Tucker, S. C., Senff, C. J., Weickmann, A. M., Brewer, W. A., Banta, R. M., Sandberg, S. P., Law, D. C., and Hardesty, R. M.: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles, J. Atmos. Ocean. Tech., 26, 673–688, 2009.
VAISALA: Radiosonde RS92-SGP, data sheet, available at: http://www.vaisala.com/Vaisala%20Documents/Brochures%20and% 20Datasheets/RS92SGP-Datasheet-B210358EN-F-LOW.pdf, last access: 19 April 2015.
Werner, C.: Doppler Wind Lidar, edited by: Weitkamp, Springer, New York, 325–353, 2005.
WMO: Statement of guidance for global numeric weather prediction (NWP), available at: www.wmo.int/pages/prog/www/OSY/GOS-RRR.html (last access: 30 June 2015), 2014.
Wolfe, D. E., Brewer, W. A., Tucker, S. C., White, A. B., White, D. E., Welsh, D. C., Ruffieux, D., Fairall, C. W., Ratterree, M., Intrieri, J. M., McCarty, B. J., and Law, D. C.: Shipboard multisensor merged wind profiles from the New England Air Quality Study 2004, J. Geophys. Res.-Atmos., 112, d10S15, https://doi.org/10.1029/2006JD007344, 2007.
Yang, M., Blomquist, B. W., and Nightingale, P. D.: Air-sea exchange of methanol and acetone during HiWinGS: Estimation of air phase, water phase gas transfer velocities, J. Geophys. Res.-Oceans, 119, 7308–7323, 2014.
Yelland, M., Moat, B. I., Taylor, P. K., Pascal, R. W., Hutchings, J., and Cornell, V. C.: Wind stress measurements from the open ocean corrected for airflow distortion by the ship, J. Phys. Oceanogr., 28, 1511–1526, 1998.
Yelland, M., Moat, B., Pascal, R., and Berry, D.: CFD model estimates of the airflow distortion over research ships and the impact on momentum flux measurements, J. Atmos. Ocean. Tech., 19, 1477–1499, 2002.
Short summary
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014. Ship-motion effects were compensated by combining a commercial Doppler lidar with a custom-made motion-stabilisation platform. This enables the retrieval of wind profiles in the Arctic boundary layer with uncertainties comparable to land-based lidar measurements and standard radiosondes. The presented set-up has the potential to facilitate continuous ship-based wind profile measurements over the oceans.
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014....