Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1135-2016
https://doi.org/10.5194/amt-9-1135-2016
Research article
 | 
18 Mar 2016
Research article |  | 18 Mar 2016

Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach

Hans Martin Schulz, Boris Thies, Shih-Chieh Chang, and Jörg Bendix

Related authors

Automatic cloud top height determination in mountainous areas using a cost-effective time-lapse camera system
H. M. Schulz, S.-C. Chang, B. Thies, and J. Bendix
Atmos. Meas. Tech., 7, 4185–4201, https://doi.org/10.5194/amt-7-4185-2014,https://doi.org/10.5194/amt-7-4185-2014, 2014
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024,https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024,https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Bayesian cloud-top phase determination for Meteosat Second Generation
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024,https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary

Cited articles

Bendix, J. and Bachmann, M.: Climatology of fog layers in the Alpine region – a study based on AVHRR data, in: Proceedings of the 6th AVHRR Data Users' Meeting, Belgirate, Italy, 29 June–2 July 1993, 237–248, 1993.
Bendix, J., Thies, B., Cermak, J., and Nauß, T.: Ground fog detection from space based on MODIS daytime data – a feasibility study, Weather Forecast., 20, 989–1005, 2005.
Bruijnzeel, L. A., Mulligan, M., and Scatena, F. N.: Hydrometeorology of tropical montane cloud forests: emerging patterns, Hydrol. Process., 25, 465–498, 2010.
Cermak, J. and Bendix, J.: A novel approach to fog/low stratus detection using Meteosat 8 data, Atmos. Res., 87, 279–292, 2008.
Cermak, J. and Bendix, J.: Detecting ground fog from space – a microphysics-based approach, Int. J. Remote Sens., 12, 3345–3371, 2011.
Download
Short summary
The mountain cloud forest of Taiwan can be delimited from other forest using a map of the ground fog frequency. An algorithm able to detect ground fog from satellite data is necessary for the creation of such a map. Common fog detection algorithms are not applicable in Taiwan as they rely on assumptions that are not met by most fog occurrences in Taiwan. Therefore a new statistical method for ground fog detection in mountainous areas that is based only on a few basic assumptions is presented.