Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1239-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-1239-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A new algorithm for detecting cloud height using OMPS/LP measurements
Zhong Chen
CORRESPONDING AUTHOR
Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, Maryland 20706, USA
Matthew DeLand
Science Systems and Applications, Inc., 10210 Greenbelt Road, Suite 600, Lanham, Maryland 20706, USA
Pawan K. Bhartia
NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
Related authors
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, Peter Colarco, and Matthew DeLand
Atmos. Meas. Tech., 11, 6495–6509, https://doi.org/10.5194/amt-11-6495-2018, https://doi.org/10.5194/amt-11-6495-2018, 2018
Short summary
Short summary
We describe the derivation of an improved aerosol size distribution (ASD) for the OMPS/LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from CARMA-calculated results. The new ASD also explains the spectral dependence of LP-measured radiances well. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP retrievals.
Natalya A. Kramarova, Pawan K. Bhartia, Glen Jaross, Leslie Moy, Philippe Xu, Zhong Chen, Matthew DeLand, Lucien Froidevaux, Nathaniel Livesey, Douglas Degenstein, Adam Bourassa, Kaley A. Walker, and Patrick Sheese
Atmos. Meas. Tech., 11, 2837–2861, https://doi.org/10.5194/amt-11-2837-2018, https://doi.org/10.5194/amt-11-2837-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) is a newly designed research sensor aiming to continue high vertical resolution ozone records from space-borne sensors. In summer 2017 all LP measurements were processed with the new version 2.5 algorithm. In this paper we provide a description of the key changes implemented in the new algorithm and evaluate the quality of ozone retrievals by comparing with independent satellite profile measurements (MLS, ACE-FTS and OSIRIS).
Robert Loughman, Pawan K. Bhartia, Zhong Chen, Philippe Xu, Ernest Nyaku, and Ghassan Taha
Atmos. Meas. Tech., 11, 2633–2651, https://doi.org/10.5194/amt-11-2633-2018, https://doi.org/10.5194/amt-11-2633-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 algorithm retrieves aerosol extinction profiles at 675 nm by iteration, based on comparisons between the measured and calculated radiance profiles (assuming an aerosol size distribution). The most significant error source is uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction may also limit the quality of the retrieved aerosol extinction profiles.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, and Peter Colarco
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-4, https://doi.org/10.5194/amt-2018-4, 2018
Revised manuscript has not been submitted
Leslie Moy, Pawan K. Bhartia, Glen Jaross, Robert Loughman, Natalya Kramarova, Zhong Chen, Ghassan Taha, Grace Chen, and Philippe Xu
Atmos. Meas. Tech., 10, 167–178, https://doi.org/10.5194/amt-10-167-2017, https://doi.org/10.5194/amt-10-167-2017, 2017
Short summary
Short summary
UV backscatter limb sounding sensors have difficulty determining altitude registration to the accuracy needed for long-term ozone monitoring. We describe two methods to achieve this by comparing radiance measurements to models. Wavelengths and altitudes chosen minimize errors from aerosol interference, calibration errors, and ozone assumptions. The techniques are inexpensive, more comprehensive than external sources of attitude information, and track drifts in our altitude to better than 100 m.
O. Torres, C. Ahn, and Z. Chen
Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-2013, https://doi.org/10.5194/amt-6-3257-2013, 2013
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165, https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Short summary
The 2022 Hunga eruption emitted about 150 Tg H2O that partly reached the upper polar SH mesosphere in the beginning of 2024. Noctilucent clouds (NLC) did not show a clear perturbation in their occurrence frequency, but the slight increase from mid-January to February could potentially be caused by the additional H2O. It needs 2 years to reach the summer polar mesopause region, analogous to the 1883 Krakatau eruption that is argued to have caused the first sightings of NCLs.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Jerald R. Ziemke, Gordon J. Labow, Natalya A. Kramarova, Richard D. McPeters, Pawan K. Bhartia, Luke D. Oman, Stacey M. Frith, and David P. Haffner
Atmos. Meas. Tech., 14, 6407–6418, https://doi.org/10.5194/amt-14-6407-2021, https://doi.org/10.5194/amt-14-6407-2021, 2021
Short summary
Short summary
Seasonal and interannual ozone profile climatologies are produced from combined MLS and MERRA-2 GMI ozone for the general public. Both climatologies extend from pole to pole at altitudes of 0–80 km (1 km spacing) for the time record from 1970 to 2018. These climatologies are important for use as a priori information in satellite ozone retrieval algorithms, as validation of other measured and model-simulated ozone, and in radiative transfer studies of the atmosphere.
Clark J. Weaver, Pawan K. Bhartia, Dong L. Wu, Gordon J. Labow, and David E. Haffner
Atmos. Meas. Tech., 13, 5715–5723, https://doi.org/10.5194/amt-13-5715-2020, https://doi.org/10.5194/amt-13-5715-2020, 2020
Short summary
Short summary
Currently, we do not know whether clouds will accelerate or moderate climate. We look to the past and ask whether cloudiness has changed over the last 4 decades. Using a suite of nine satellite instruments, we need to ensure that the first satellite, which was launched in 1980 and died in 1991, observed the same measurement as the eight other satellite instruments used in the record. If the instruments were measuring length and observing a 1.00 m long stick, they would all see 0.99 to 1.01 m.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Stacey M. Frith, Pawan K. Bhartia, Luke D. Oman, Natalya A. Kramarova, Richard D. McPeters, and Gordon J. Labow
Atmos. Meas. Tech., 13, 2733–2749, https://doi.org/10.5194/amt-13-2733-2020, https://doi.org/10.5194/amt-13-2733-2020, 2020
Short summary
Short summary
We use the NASA GEOS-GMI chemistry climate model to construct a climatology of stratospheric ozone diurnal variations as a function of latitude, pressure and month, which can be used in a variety of data analysis tasks involving ozone observations made at different times of the day. The climatology compares well with previous modeling simulations and available observations, and to the authors' knowledge is the first characterization of the diurnal cycle available for general ozone data analyses.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Bradford L. Fisher, Nickolay A. Krotkov, Pawan K. Bhartia, Can Li, Simon A. Carn, Eric Hughes, and Peter J. T. Leonard
Atmos. Meas. Tech., 12, 5137–5153, https://doi.org/10.5194/amt-12-5137-2019, https://doi.org/10.5194/amt-12-5137-2019, 2019
Short summary
Short summary
This article describes a new discrete wavelength algorithm, MS_SO2, which has been used operationally to retrieve global daily volcanic SO2 vertical column densities and the UV volcanic ash index from the Total Ozone Mapping Spectrometer (TOMS) data collected by NASA’s Nimbus-7 satellite from 1978 to 1991. We examine the sensitivity of the algorithm to the detection of SO2, evaluate potential sources of error and compare results from MS_SO2 with the Principal Component Analysis (PCA) algorithm.
Matthew T. DeLand and Gary E. Thomas
Atmos. Chem. Phys., 19, 7913–7925, https://doi.org/10.5194/acp-19-7913-2019, https://doi.org/10.5194/acp-19-7913-2019, 2019
Short summary
Short summary
We have extended our 40-year satellite data record of polar mesospheric cloud (PMC) behavior by adding data from a new instrument. Long-term trends in PMC ice water content derived from this record are smaller since 1998 compared to the first part of our data record. The PMC response to solar activity has decreased in the Northern Hemisphere but increased in the Southern Hemisphere, for reasons that are not understood.
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019, https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Short summary
Both a 38-year merged satellite record of tropospheric ozone from TOMS/OMI/MLS/OMPS and a MERRA-2 GMI model simulation show large increases of 6–7 Dobson units from the Near East to India–East Asia and eastward over the Pacific. These increases in tropospheric ozone are attributed to increases in pollution over the region over the last several decades. Secondary 38-year increases of 4–5 Dobson units with both GMI model and satellite measurements occur over central African–tropical Atlantic.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, Peter Colarco, and Matthew DeLand
Atmos. Meas. Tech., 11, 6495–6509, https://doi.org/10.5194/amt-11-6495-2018, https://doi.org/10.5194/amt-11-6495-2018, 2018
Short summary
Short summary
We describe the derivation of an improved aerosol size distribution (ASD) for the OMPS/LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from CARMA-calculated results. The new ASD also explains the spectral dependence of LP-measured radiances well. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP retrievals.
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093–4107, https://doi.org/10.5194/amt-11-4093-2018, https://doi.org/10.5194/amt-11-4093-2018, 2018
Short summary
Short summary
We discuss a new cloud algorithm that retrieves effective cloud fraction and cloud altitude and pressure from the oxygen dimer absorption band at 477 nm. The algorithm accounts for how changes in the sun–satellite geometry affect the surface reflection. The cloud fraction and pressure are used as inputs to the OMI algorithm that retrieves a pollutant gas called nitrogen dioxide. Impacts of the application of the newly developed cloud algorithm on the OMI nitrogen dioxide retrieval are discussed.
Natalya A. Kramarova, Pawan K. Bhartia, Glen Jaross, Leslie Moy, Philippe Xu, Zhong Chen, Matthew DeLand, Lucien Froidevaux, Nathaniel Livesey, Douglas Degenstein, Adam Bourassa, Kaley A. Walker, and Patrick Sheese
Atmos. Meas. Tech., 11, 2837–2861, https://doi.org/10.5194/amt-11-2837-2018, https://doi.org/10.5194/amt-11-2837-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) is a newly designed research sensor aiming to continue high vertical resolution ozone records from space-borne sensors. In summer 2017 all LP measurements were processed with the new version 2.5 algorithm. In this paper we provide a description of the key changes implemented in the new algorithm and evaluate the quality of ozone retrievals by comparing with independent satellite profile measurements (MLS, ACE-FTS and OSIRIS).
Omar Torres, Pawan K. Bhartia, Hiren Jethva, and Changwoo Ahn
Atmos. Meas. Tech., 11, 2701–2715, https://doi.org/10.5194/amt-11-2701-2018, https://doi.org/10.5194/amt-11-2701-2018, 2018
Short summary
Short summary
Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor’s viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI’s spatial coverage. It currently affects about half of the instrument’s 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved parameters.
Robert Loughman, Pawan K. Bhartia, Zhong Chen, Philippe Xu, Ernest Nyaku, and Ghassan Taha
Atmos. Meas. Tech., 11, 2633–2651, https://doi.org/10.5194/amt-11-2633-2018, https://doi.org/10.5194/amt-11-2633-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 algorithm retrieves aerosol extinction profiles at 675 nm by iteration, based on comparisons between the measured and calculated radiance profiles (assuming an aerosol size distribution). The most significant error source is uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction may also limit the quality of the retrieved aerosol extinction profiles.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, and Peter Colarco
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-4, https://doi.org/10.5194/amt-2018-4, 2018
Revised manuscript has not been submitted
Jerald R. Ziemke, Sarah A. Strode, Anne R. Douglass, Joanna Joiner, Alexander Vasilkov, Luke D. Oman, Junhua Liu, Susan E. Strahan, Pawan K. Bhartia, and David P. Haffner
Atmos. Meas. Tech., 10, 4067–4078, https://doi.org/10.5194/amt-10-4067-2017, https://doi.org/10.5194/amt-10-4067-2017, 2017
Short summary
Short summary
We combine satellite measurements of ozone and cloud properties from the Aura OMI and MLS instruments for 2004–2016 to measure ozone in the mid–upper levels of deep convective clouds. Our results ascribe upward injection of low boundary layer ozone (varying from low to high amounts) as a major driver of the measured concentrations of ozone in thick clouds. Our OMI/MLS generated ozone product is made available to the public for use in science applications.
Viktoria F. Sofieva, Erkki Kyrölä, Marko Laine, Johanna Tamminen, Doug Degenstein, Adam Bourassa, Chris Roth, Daniel Zawada, Mark Weber, Alexei Rozanov, Nabiz Rahpoe, Gabriele Stiller, Alexandra Laeng, Thomas von Clarmann, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Claus Zehner, Robert Damadeo, Joseph Zawodny, Natalya Kramarova, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, https://doi.org/10.5194/acp-17-12533-2017, 2017
Short summary
Short summary
We present a merged dataset of ozone profiles from several satellite instruments: SAGE II, GOMOS, SCIAMACHY, MIPAS, OSIRIS, ACE-FTS and OMPS. For merging, we used the latest versions of the original ozone datasets.
The merged SAGE–CCI–OMPS dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Leslie Moy, Pawan K. Bhartia, Glen Jaross, Robert Loughman, Natalya Kramarova, Zhong Chen, Ghassan Taha, Grace Chen, and Philippe Xu
Atmos. Meas. Tech., 10, 167–178, https://doi.org/10.5194/amt-10-167-2017, https://doi.org/10.5194/amt-10-167-2017, 2017
Short summary
Short summary
UV backscatter limb sounding sensors have difficulty determining altitude registration to the accuracy needed for long-term ozone monitoring. We describe two methods to achieve this by comparing radiance measurements to models. Wavelengths and altitudes chosen minimize errors from aerosol interference, calibration errors, and ozone assumptions. The techniques are inexpensive, more comprehensive than external sources of attitude information, and track drifts in our altitude to better than 100 m.
Juseon Bak, Xiong Liu, Jae H. Kim, Matthew T. Deland, and Kelly Chance
Atmos. Meas. Tech., 9, 4521–4531, https://doi.org/10.5194/amt-9-4521-2016, https://doi.org/10.5194/amt-9-4521-2016, 2016
Short summary
Short summary
The main focus of this paper is improving an error of OMI nadir ozone profile retrievals due to the presence of polar mesospheric clouds (PMCs), consisting of small light-scattering particles at an altitude of 80–85 km. This error is shown to be systematic bias from ~ −2 at 2 hPa to ~ −20 % at 0.5 hPa and significantly correlated with brightness of PMCs. We reduce this interference of PMCs on ozone retrievals by including the PMC optical depth in the forward-model calculation and retrieval.
Pawan Gupta, Joanna Joiner, Alexander Vasilkov, and Pawan K. Bhartia
Atmos. Meas. Tech., 9, 2813–2826, https://doi.org/10.5194/amt-9-2813-2016, https://doi.org/10.5194/amt-9-2813-2016, 2016
Short summary
Short summary
The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. In this paper, retrievals of cloud/aerosols parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been used to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data as inputs. Application of our method to other ultraviolet sensors may provide unique estimates of TOA SWF.
U. Jeong, J. Kim, C. Ahn, O. Torres, X. Liu, P. K. Bhartia, R. J. D. Spurr, D. Haffner, K. Chance, and B. N. Holben
Atmos. Chem. Phys., 16, 177–193, https://doi.org/10.5194/acp-16-177-2016, https://doi.org/10.5194/acp-16-177-2016, 2016
Short summary
Short summary
An aerosol retrieval and error analysis algorithm using OMI measurements based on an optimal-estimation method was developed in this study. The aerosol retrievals were validated using the DRAGON campaign products. The estimated errors of the retrievals represented the actual biases between retrieval and AERONET measurements well. The retrievals, with their estimated uncertainties, are expected to be valuable for relevant studies, such as trace gas retrieval and data assimilation.
J. Bak, X. Liu, J. H. Kim, M. T. Deland, and K. Chance
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-25907-2015, https://doi.org/10.5194/acpd-15-25907-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This work demonstrated the interference of tenuous PMCs on OMI ozone profile retrievals above 6hPa. The presence of PMCs leads to the systematic biases of -2% at 2hPa and -20% at 0.5hPa in OMI retrievals, which are significantly correlated with brightness of PMCs. We perform simultaneous retrievals of PMC optical depth with ozone using optimal estimation technique, to reduce the interference on ozone profile retrievals. As a result, the negative OMI biases are reduced to within ±10%.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
R. Loughman, D. Flittner, E. Nyaku, and P. K. Bhartia
Atmos. Chem. Phys., 15, 3007–3020, https://doi.org/10.5194/acp-15-3007-2015, https://doi.org/10.5194/acp-15-3007-2015, 2015
Short summary
Short summary
The Gauss--Seidel limb scattering (GSLS) radiative transfer model simulates the transfer of solar radiation through the atmosphere. Several recent changes have been added that improve the accuracy and flexibility of the GSLS radiance calculations. The single-scattered radiance errors have been reduced from 4% in earlier studies to 0.3%, while total radiance errors generally decline from 10% to 1-3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.
A. Parrish, I. S. Boyd, G. E. Nedoluha, P. K. Bhartia, S. M. Frith, N. A. Kramarova, B. J. Connor, G. E. Bodeker, L. Froidevaux, M. Shiotani, and T. Sakazaki
Atmos. Chem. Phys., 14, 7255–7272, https://doi.org/10.5194/acp-14-7255-2014, https://doi.org/10.5194/acp-14-7255-2014, 2014
E. W. Chiou, P. K. Bhartia, R. D. McPeters, D. G. Loyola, M. Coldewey-Egbers, V. E. Fioletov, M. Van Roozendael, R. Spurr, C. Lerot, and S. M. Frith
Atmos. Meas. Tech., 7, 1681–1692, https://doi.org/10.5194/amt-7-1681-2014, https://doi.org/10.5194/amt-7-1681-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
N. A. Kramarova, E. R. Nash, P. A. Newman, P. K. Bhartia, R. D. McPeters, D. F. Rault, C. J. Seftor, P. Q. Xu, and G. J. Labow
Atmos. Chem. Phys., 14, 2353–2361, https://doi.org/10.5194/acp-14-2353-2014, https://doi.org/10.5194/acp-14-2353-2014, 2014
L. K. Huang, M. T. DeLand, S. L. Taylor, and L. E. Flynn
Atmos. Meas. Tech., 7, 267–278, https://doi.org/10.5194/amt-7-267-2014, https://doi.org/10.5194/amt-7-267-2014, 2014
O. Torres, C. Ahn, and Z. Chen
Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-2013, https://doi.org/10.5194/amt-6-3257-2013, 2013
E. J. Bucsela, N. A. Krotkov, E. A. Celarier, L. N. Lamsal, W. H. Swartz, P. K. Bhartia, K. F. Boersma, J. P. Veefkind, J. F. Gleason, and K. E. Pickering
Atmos. Meas. Tech., 6, 2607–2626, https://doi.org/10.5194/amt-6-2607-2013, https://doi.org/10.5194/amt-6-2607-2013, 2013
P. K. Bhartia, R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand
Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, https://doi.org/10.5194/amt-6-2533-2013, 2013
J. Herman, M. T. DeLand, L.-K. Huang, G. Labow, D. Larko, S. A. Lloyd, J. Mao, W. Qin, and C. Weaver
Atmos. Chem. Phys., 13, 8505–8524, https://doi.org/10.5194/acp-13-8505-2013, https://doi.org/10.5194/acp-13-8505-2013, 2013
N. A. Kramarova, P. K. Bhartia, S. M. Frith, R. D. McPeters, and R. S. Stolarski
Atmos. Meas. Tech., 6, 2089–2099, https://doi.org/10.5194/amt-6-2089-2013, https://doi.org/10.5194/amt-6-2089-2013, 2013
N. A. Kramarova, S. M. Frith, P. K. Bhartia, R. D. McPeters, S. L. Taylor, B. L. Fisher, G. J. Labow, and M. T. DeLand
Atmos. Chem. Phys., 13, 6887–6905, https://doi.org/10.5194/acp-13-6887-2013, https://doi.org/10.5194/acp-13-6887-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Discriminating between "Drizzle or rain" and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Infrared Radiometric Image Classification and Segmentation of Cloud Structure Using Deep-learning Framework for Ground-based Infrared Thermal Camera Observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
3-D Cloud Masking Across a Broad Swath using Multi-angle Polarimetry and Deep Learning
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Particle inertial effects on radar Doppler spectra simulation
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Introduction to EarthCARE synthetic data using a global storm-resolving simulation
Validation of a camera-based intra-hour irradiance nowcasting model using synthetic cloud data
Liquid cloud optical property retrieval and associated uncertainties using multi-angular and bispectral measurements of the airborne radiometer OSIRIS
Global evaluation of Doppler velocity errors of EarthCARE cloud-profiling radar using a global storm-resolving simulation
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2024-2090, https://doi.org/10.5194/egusphere-2024-2090, 2024
Short summary
Short summary
This article presents a novel technique to estimate the liquid water content (LWC) in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows to retrieve the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of the LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-894, https://doi.org/10.5194/egusphere-2024-894, 2024
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "Drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for the measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over two years at the BCO is presented.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-87, https://doi.org/10.5194/amt-2024-87, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine-learning method. Retrievals from a machine learning algorithm are used to provide initial guesses, and a radiative transfer model is used to create radiance lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and is applicable both daytime and nighttime conditions.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-40, https://doi.org/10.5194/amt-2024-40, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we measured that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
EGUsphere, https://doi.org/10.5194/egusphere-2024-101, https://doi.org/10.5194/egusphere-2024-101, 2024
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observations experiments.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2392, https://doi.org/10.5194/egusphere-2023-2392, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles, and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023, https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Yuichiro Hagihara, Yuichi Ohno, Hiroaki Horie, Woosub Roh, Masaki Satoh, and Takuji Kubota
Atmos. Meas. Tech., 16, 3211–3219, https://doi.org/10.5194/amt-16-3211-2023, https://doi.org/10.5194/amt-16-3211-2023, 2023
Short summary
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
Cited articles
Bourassa A. E., Degenstein, D. A., and Llewellyn E. J.: Climatology of the
subvisual cirrus clouds as seen by OSIRIS on Odin, Adv. Space Res., 36,
807–812, 2005.
Chen, B., Huang, J., Minnis, P., Hu, Y., Yi, Y., Liu, Z., Zhang, D., and
Wang, X.: Detection of dust aerosol by combining CALIPSO active lidar and
passive IIR measurements, Atmos. Chem. Phys., 10, 4241–4251,
https://doi.org/10.5194/acp-10-4241-2010, 2010.
Chen, Z., Torres, O., McCormick, M. P., Smith, W., and Ahn, C.: Comparative
study of aerosol and cloud detected by CALIPSO and OMI, Atmos. Environ., 51,
187–195, 2012.
Eichmann, K.-U., Lelli, L., von Savigny, C., Sembhi, H., and Burrows, J. P.:
Global cloud top height retrieval using SCIAMACHY limb spectra: model studies
and first results, Atmos. Meas. Tech., 9, 793–815,
https://doi.org/10.5194/amt-9-793-2016, 2016.
Flynn, L. E., Seftor, C. J., Larsen, J. C., and Xu, P.: The Ozone Mapping and
Profiler Suite, in: Earth Science Satellite Remote Sensing, edited by: Qu,
J. J., Gao, W., Kafatos, M., Murphy, R. E., and Salomonson, V. V., Springer,
Berlin, 279–296, https://doi.org/10.1007/978-3-540-37293-6, 2007.
Herman, B. M., Caudill, T. R., Flittner, D. E., Thome, K. J., and Ben-David,
A.: Comparison of the Gauss-Seidel spherical polarized radiative transfer
code with other radiative transfer codes, Appl. Optics, 34, 4563–4572, 1995.
Jaross, G., Bhartia, P. K., Chen, G., Kowitt, M., Haken, M., Chen, Z., Xu,
P., Warner, J., and Kelly, T.: OMPS Limb Profiler instrument performance
assessment, J. Geophys. Res.-Atmos., 119, 4399–4412,
https://doi.org/10.1002/2013JD020482, 2014.
Kacenelenbogen, M., Vaughan, M. A., Redemann, J., Hoff, R. M., Rogers, R. R.,
Ferrare, R. A., Russell, P. B., Hostetler, C. A., Hair, J. W., and Holben,
B. N.: An accuracy assessment of the CALIOP/CALIPSO version 2/version 3
daytime aerosol extinction product based on a detailed multi-sensor,
multi-platform case study, Atmos. Chem. Phys., 11, 3981–4000,
https://doi.org/10.5194/acp-11-3981-2011, 2011.
Kent, G. S., Winker, D. M., Vaughan, M. A., Wang, P.-H., and Skeens, K. M.:
Simulation of Stratospheric Aerosol and Gas Experiment (SAGE) II cloud
measurements using airborne lidar data, J. Geophys. Res., 102, 21795–21807,
https://doi.org/10.1029/97JD01390, 1997.
Koelemeijer, R. B. A., Stammes, P., Hovenier, J. W., and de Haan, J. F.: A
fast method for retrieval of cloud parameters using oxygen A-band
measurements from the Global Ozone Monitoring Experiment, J. Geophys. Res.,
106, 3475–3490, https://doi.org/10.1029/2000JD900657, 2001.
Kokhanovsky, A. A., Rozanov, V. V., Burrows, J. P., Eichmann, K. U., Lotz,
W., and Vountas, M.: The SCIAMACHY cloud products: Algorithms and examples
from ENVISAT, Adv. Space Res., 36, 789–799, https://doi.org/10.1016/j.asr.2005.03.026,
2005.
Kuze, A. and Chance, K. V.: Analysis of cloud top height and cloud coverage
from satellites using the O2 A and B bands, J. Geophys. Res., 99,
14481–14491, 1994.
Loyola, D., Thomas, W., Livschitz, Y., Ruppert, T., Albert, P., and Hollmann,
R.: Cloud properties derived from GOME/ERS-2 backscatter data for trace gas
retrieval, IEEE T. Geosci. Remote, 45, 2747–2758, 2007.
Loyola, D., Thomas, W., Spurr, R., and Mayer, B.: Global patterns in daytime
cloud properties derived from GOME backscatter UV-VIS measurements, Int. J.
Remote Sens., 31, 4295–4318, 2010.
OMPS/LP Level 1: OMPS Limb Profiler Suomi NPP-LP-L1G-EV, available at: https://ozoneaq.gsfc.nasa.gov/data/ozone/, last access: 22 March 2016.
Rault, D. F. and Loughman, R. P.: The OMPS Limb Profiler Environmental Data
Record algorithm theoretical basis document and expected performance, IEEE
T. Geosci. Remote, 51, 2505–2527, 2013.
Rozanov, V. V. and Kokhanovsky, A. A.: Semianalytical cloud retrieval
algorithm as applied to the cloud top altitude and the cloud geometrical
thickness determination from top-of-atmosphere reflectance measurements in
the oxygen A band, J. Geophys. Res., 109, D05202, https://doi.org/10.1029/2003JD004104,
2004.
Schuessler, O., Loyola, D., Doicu, A., and Spurr, R.: Information Content in
the Oxygen A-Band for the Retrieval of Macrophysical Cloud Parameters, IEEE
T. Geosci. Remote, 52, 3246–3255, 2014.
van Diedenhoven, B., Hasekamp, O. P., and Landgraf, J.: Retrieval of cloud
parameters from satellite-based reflectance measurements in the ultraviolet
and the oxygen A-band, J. Geophys. Res., 112, D15208,
https://doi.org/10.1029/2006JD008155, 2007.
Vaughan, M., Young, S., Winker, D., Powell, K., Omar, A., Liu, Z., Hu, Y.,
and Hostetler, C.: Fully automated analysis of spacebased lidar data: an
overview of the CALIPSO retrieval algorithms and data products, Proc. SPIE,
5575, 16–30, 2004.
von Savigny, C., Ulasi, E. P., Eichmann, K.-U., Bovensmann, H., and Burrows,
J. P.: Detection and mapping of polar stratospheric clouds using limb
scattering observations, Atmos. Chem. Phys., 5, 3071–3079,
https://doi.org/10.5194/acp-5-3071-2005, 2005.
Winker, D. M., Pelon, J., and McCormick, M. P.: The CALIPSO mission:
Spaceborne lidar for observation of aerosols and clouds, Proc. SPIE, 4893,
1–11, 2003.
Short summary
We have developed a new algorithm to detect cloud height using satellite data.
We have developed a new algorithm to detect cloud height using satellite data.