Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-2253-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-2253-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B
Jacek M. Kopeć
CORRESPONDING AUTHOR
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Kamil Kwiatkowski
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
University Centre for Environmental Studies and Sustainable Development, University of Warsaw, Warsaw, Poland
Siebren de Haan
Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Szymon P. Malinowski
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Related authors
No articles found.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
Geosci. Model Dev., 18, 7735–7761, https://doi.org/10.5194/gmd-18-7735-2025, https://doi.org/10.5194/gmd-18-7735-2025, 2025
Short summary
Short summary
The Next Generation of Earth Modeling Systems project (nextGEMS) developed two Earth system models that use horizontal grid spacing of 10 km and finer, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS simulated the Earth System climate over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Siebren de Haan, Paul de Jong, Michal Koutek, Jan Sondij, and Lukas Strauss
Atmos. Meas. Tech., 18, 3341–3359, https://doi.org/10.5194/amt-18-3341-2025, https://doi.org/10.5194/amt-18-3341-2025, 2025
Short summary
Short summary
This paper describes the operational method of extracting meteorological information from all airborne aircraft in the European airspace every 20 s to 1 min. The methodology is described, and the quality of the wind and temperature observations is evaluated against radiosonde and other aircraft observations.
Robert Grosz, Kamal Kant Chandrakar, Raymond A. Shaw, Jesse C. Anderson, Will Cantrell, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 2619–2638, https://doi.org/10.5194/amt-18-2619-2025, https://doi.org/10.5194/amt-18-2619-2025, 2025
Short summary
Short summary
Our objective was to enhance understanding of thermally driven convection in terms of small-scale variations in the temperature scalar field. We conducted a small-scale study of the temperature field in the Π Chamber using three different temperature differences (10 K, 15 K, and 20 K). Measurements were carried out using a miniaturized UltraFast Thermometer operating at 2 kHz, allowing undisturbed vertical temperature profiling from 8 cm above the floor to 5 cm below the ceiling.
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Katarzyna Nurowska, Moein Mohammadi, Szymon Malinowski, and Krzysztof Markowicz
Atmos. Meas. Tech., 16, 2415–2430, https://doi.org/10.5194/amt-16-2415-2023, https://doi.org/10.5194/amt-16-2415-2023, 2023
Short summary
Short summary
In this paper we evaluate the low-cost Alphasense OPC-N3 optical particle counter for measurements of fog microphysics. We compare OPC-N3 with the Oxford Lasers VisiSize D30. This work is significant because OPC-N3 can be used with drones for vertical profiles in fog.
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Moein Mohammadi, Jakub L. Nowak, Guus Bertens, Jan Moláček, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Meas. Tech., 15, 965–985, https://doi.org/10.5194/amt-15-965-2022, https://doi.org/10.5194/amt-15-965-2022, 2022
Short summary
Short summary
To compare two instruments, a VisiSize D30 shadowgraph system and a phase Doppler interferometer (PDI-FPDR), we performed a series of measurements of cloud droplet size and number concentration in orographic clouds. After applying essential modifications and filters to the data, the results from the two instruments showed better agreement in droplet sizing and velocimetry than droplet number concentration or liquid water content. Discrepancies were observed for droplets smaller than 13 µm.
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022, https://doi.org/10.5194/amt-15-811-2022, 2022
Short summary
Short summary
AMDAR temperatures suffer from a bias, which can be related to a difference in the timing of height and measurement and to internal corrections applied to pressure altitude. Based on NWP model temperature data, combined with Mach number and true airspeed, we could estimate corrections. Comparing corrected temperatures with (independent) radiosonde observations demonstrates a reduction in the bias, from 0.5 K to around zero, and standard deviation, of almost 10 %.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jakub L. Nowak, Holger Siebert, Kai-Erik Szodry, and Szymon P. Malinowski
Atmos. Chem. Phys., 21, 10965–10991, https://doi.org/10.5194/acp-21-10965-2021, https://doi.org/10.5194/acp-21-10965-2021, 2021
Short summary
Short summary
Turbulence properties in two cases of a marine stratocumulus-topped boundary layer have been compared using high-resolution helicopter-borne in situ measurements. In the coupled one, small-scale turbulence was close to isotropic and reasonably followed inertial range scaling according to Kolmogorov theory. In the decoupled one, turbulence was more anisotropic and the scaling deviated from theory. This was more pronounced in the cloud and subcloud layers in comparison to the surface mixed layer.
Jakub L. Nowak, Moein Mohammadi, and Szymon P. Malinowski
Atmos. Meas. Tech., 14, 2615–2633, https://doi.org/10.5194/amt-14-2615-2021, https://doi.org/10.5194/amt-14-2615-2021, 2021
Short summary
Short summary
A commercial instrument that characterizes sprays via shadowgraphy imaging was applied to measure the number concentration and size distribution of cloud droplets. Laboratory and field tests were performed to verify the resolution, detection reliability and sizing accuracy. We developed a correction to the data processing method which improves the estimation of cloud microphysical properties. The paper concludes with recommendations concerning the use of the instrument in cloud physics studies.
Cited articles
Cho, J. Y. N., Newell, R. E., Anderson, B. E., Barrick, J. D. W., and Thornhill, K. L.: Characterizations of tropospheric turbulence and stability layers from aircraft observations, J. Geophys. Res., 108, 8784, https://doi.org/10.1029/2002JD002820, 2003.
Cornman, L. B., Morse, C. S., and Cunning, G.: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements, J. Aircraft, 32, 171–177, https://doi.org/10.2514/3.46697, 1995.
Drüe, C., Deimel, S., and Hoff, A.: A low-cost approach to derive upper-air wind measurements from ADS-B, 13th EMS Annual Meeting, Reading, UK, 9–13 September 2013, available at: http://presentations.copernicus.org/EMS2013-702_presentation.pdf (last access: 21 August 2015), 2013.
Frehlich, R. and Sharman, R.: Climatology of velocity and tempera-ture turbulence statistics determined from rawinsonde and ACARS/AMDAR data, J. Appl. Meteorol. Clim., 49, 1149–1169, https://doi.org/10.1175/2010JAMC2196.1, 2010.
Gill, P. G. and Buchanan, P.: An ensemble based turbulence forecasting system, Meteorol. Appl., 21, 12–19, https://doi.org/10.1002/met.1373, 2014.
Grappel, R. D. and Wiken, R. T.: Guidance Material for Mode S-Specific Protocol Application Avionics, Tech. Rep. ATC-334, Lincoln Laboratory, MIT, Lexington, MA, USA, available at: https://www.ll.mit.edu/mission/aviation/publications/publication-files/atc-reports/Grappel_2007_ATC-334_WW-15318.pdf (last access: 7 August 2015), 2007.
Haan, S.: High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar, J. Geophys. Res., 116, D10111, https://doi.org/10.1029/2010JD015264, 2011.
Haan, S., Haij, M., and Sondij, J.: The use of a commercial ADS-B receiver to derive upper air wind and temperature observations from Mode-S EHS information in the Netherlands, Tech. Rep. TR-336, KNMI, De Bilt, the Netherlands, available at: http://www.knmi.nl/bibliotheek/knmipubTR/TR336.pdf (last access: 6 August 2015), 2013.
ICAO: Manual on Mode S Specific Services, Montreal, Canada, 2004.
ICAO: Annex 3 to the Convention on International Civli Aviation: Meteorological Service for International Air Navigation, International Civil Aviation Organisation, Montreal, Canada, 16th edn., 2007a.
ICAO: Annex 10 to the Convention on International Civli Aviation: Aeronautical Communications, International Civil Aviation Organisation, Montreal, Canada, 4th edn., 2007b.
ICAO: Guidance Material on Comparison of Surveillance Technologies (GMST), available at: http://www.icao.int/APAC/Documents/edocs/cns/gmst_technology.pdf (last access: 12 August 2015), 2007c.
James, P. K.: A review of radar observations of the troposphere in clear air conditions, Radio Sci., 15, 151–175, https://doi.org/10.1029/RS015i002p00151, 1980.
Kim, J.-H., Chan, W. N., Sridhar, B., and Sharman, R. D.: Combined winds and turbulence prediction system for automated air-traffic management applications, J. Appl. Meteorol. Clim., 54, 766–784, https://doi.org/10.1175/JAMC-D-14-0216.1, 2015.
Koch, S. E., Jamison, B. D., Lu, C., Smith, T. L., Tollerud, E. I., Girz, C., Wang, N., Lane, T. P., Shapiro, M. A., Parrish, D. D., and Cooper, O. R.: Turbulence and gravity waves within an upper-level front, J. Atmos. Sci., 62, 3885–3908, https://doi.org/10.1175/JAS3574.1, 2005.
Krozel, J. A. and Sharman, R. D.: Remote Detection of Turbulence via ADS-B, AIAA Guidance, Navigation, and Control Conference, AIAA 2015-1547, AIAA SciTech, https://doi.org/10.2514/6.2015-1547, 2015.
Lester, P.: Turbulence – A New Perspective for Pilots, Jeppesen Sanderson, Engelwood, CO, USA, 1994.
Meischner P., Baumann R., Höller H., and Jank, T.: Eddy Dissipation Rates in Thunderstorms Estimated by Doppler Radar in Relation to Aircraft In Situ Measurements, J. Atmos. Ocean. Tech., 18, 1609–1627, https://doi.org/10.1175%2F1520-0426(2001)018%3C1609%3AEDRITE%3E2.0.CO%3B2, 2001.
Monin, A. S. and Yaglom, A. M.: Statistical Fluid Mechanics, vol. 2, MIT Press, Cambridge, MA, USA, 1975.
Mulally, D. J. and Anderson, A.: Correction of Aircraft Flux Valve Based Heading for Two-Dimensional Winds Aloft Calculations Using Weather Model Comparisons, 15th Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), 22–27 January 2011, Seattle, WA, USA, 2011.
NASA: U.S. Standard Atmosphere, National Aeronautics and Space Administration, Washington, USA, available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf (last access: 13 August 2015), 1976.
NTSB: Review of U.S. Civil Aviation Accidents 2007–2009, Tech. Rep. NTSB/ARA-11/01, National Transportation Safety Board, Washington, USA, available at: www.ntsb.gov/investigations/data/Documents/ARA1101.pdf (last access: 6 August 2015), 2011.
NTSB: Review of U.S. Civil Aviation Accidents 2010, Tech. Rep. NTSB/ARA-12/01, National Transportation Safety Board, available at: www.ntsb.gov/investigations/data/Documents/ARA1201.pdf (last access: 6 August 2015), 2012.
Poggi, D. and Katul, G. G.: Evaluation of the turbulent kinetic energy inside canopies by zero- and level-crossing density methods, Bound.-Lay. Meteorol., 136, 219–233, https://doi.org/10.1007/s10546-010-9503-2, 2010.
Signal developers: signal: Signal processing, available at: http://r-forge.r-project.org/projects/signal/ (last access: 31 March 2016), 2013.
Sharman, R., Tebaldi, C., Wiener, G., and Wolff, J.: An integrated approach to mid- and upper-level turbulence forecasting, Weather Forecast., 21, 268–287, https://doi.org/10.1175/WAF924.1, 2006.
Sharman, R. D., Trier, S. B., Lane, T. P., and Doyle, J. D.: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: a review, Geophys. Res. Lett., 39, L12803, https://doi.org/10.1029/2012GL051996, 2012.
Sharman, R. D., Cornman, L. B., Meymaris, G., Pearson, J., and Farrar, T.: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence, J. Appl. Meteorol. Clim., 53, 1416–1432, https://doi.org/10.1175/JAMC-D-13-0329.1, 2014.
Sreenivasan, K. R.: On the universality of the Kolmogorov constant, Phys. Fluids, 7, 2778–2784, https://doi.org/10.1063/1.868656, 1995.
Stone, E. K. and Pearce, G.: An operational network of Mode-S receivers for aircraft derived meteorological data, J. Atmos. Oceanic Technol., in press, https://doi.org/10.1175/JTECH-D-15-0184.1, 2016.
Trier, S. B. and Sharman, R. D.: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system, Mon. Weather Rev., 137, 1972–1990, 2009.
Trier, S. B., Sharman, R. D., Fovell, R. G., and Frehlich, R. G.: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system, J. Atmos. Sci., 67, 2990–2999, https://doi.org/10.1175/2010JAS3531.1, 2010.
Trier, S. B., Sharman, R. D., and Lane, T. P.: Influences of moist convection on a cold-season outbreak of Clear-Air Turbulence (CAT), Mon. Weather Rev., 140, 2477–2496, https://doi.org/10.1175/MWR-D-11-00353.1, 2012.
Veerman, H., Vrancken, P., and Lombard, L.: Flight testing delicat – a promise for medium-range clear air turbulence protection, in: European 46th SETP and 25th SFTE Symposium, Luleå, Sweden, 15–18 June 2014, available at: https://hal.archives-ouvertes.fr/hal-01111380 (last access: 7 August 2015), 2014.
Vrancken, P.: Airborne remote detection of turbulence with forward-looking LIDAR, in: Aviation Turbulence – Processes, Detection, Prediction, edited by: Sharman, R. D. and Lane, T. P., Springer, Cham, Switzerland, 2015.
Williams, J.: Using random forests to diagnose aviation turbulence, Mach. Learn., 95, 51–70, https://doi.org/10.1007/s10994-013-5346-7, 2014.
Wyngaard, J. C.: Turbulence in the Atmosphere, Cambridge University Press, Cambridge, UK, 2010.
WMO: Aircraft Meteorological Data Relay (AMDAR) Reference Manual, World Meteorological Organization, WMO-No. 958, Geneva, Switzerland, 2003.
Wright, J. R. and Cooper, J. E.: Introduction to Aircraft Aeroelasticity and Loads, John Wiley and Sons, Chichester, UK, 2014.
Short summary
This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.
This paper is presenting a feasibility study focused on methods of estimating the turbulence...