Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Download
Short summary
This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.
Articles | Volume 9, issue 5
Atmos. Meas. Tech., 9, 2253–2265, 2016
https://doi.org/10.5194/amt-9-2253-2016
Atmos. Meas. Tech., 9, 2253–2265, 2016
https://doi.org/10.5194/amt-9-2253-2016

Research article 23 May 2016

Research article | 23 May 2016

Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B

Jacek M. Kopeć et al.

Related authors

Applicability of the VisiSize D30 shadowgraph system for cloud microphysical measurements
Jakub L. Nowak, Moein Mohammadi, and Szymon P. Malinowski
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-363,https://doi.org/10.5194/amt-2020-363, 2020
Revised manuscript accepted for AMT
Short summary
Turbulence-induced cloud voids: observation and interpretation
Katarzyna Karpińska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond A. Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, and Eberhard Bodenschatz
Atmos. Chem. Phys., 19, 4991–5003, https://doi.org/10.5194/acp-19-4991-2019,https://doi.org/10.5194/acp-19-4991-2019, 2019
Short summary
Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series
Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski
Atmos. Meas. Tech., 10, 4573–4585, https://doi.org/10.5194/amt-10-4573-2017,https://doi.org/10.5194/amt-10-4573-2017, 2017
Short summary
Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016,https://doi.org/10.5194/amt-9-5385-2016, 2016
Short summary
Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation
Siebren de Haan
Atmos. Meas. Tech., 9, 4141–4150, https://doi.org/10.5194/amt-9-4141-2016,https://doi.org/10.5194/amt-9-4141-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Separation of convective and stratiform precipitation using polarimetric radar data with a support vector machine method
Yadong Wang, Lin Tang, Pao-Liang Chang, and Yu-Shuang Tang
Atmos. Meas. Tech., 14, 185–197, https://doi.org/10.5194/amt-14-185-2021,https://doi.org/10.5194/amt-14-185-2021, 2021
Short summary
An approach to minimize aircraft motion bias in multi-hole probe wind measurements made by small unmanned aerial systems
Loiy Al-Ghussain and Sean C. C. Bailey
Atmos. Meas. Tech., 14, 173–184, https://doi.org/10.5194/amt-14-173-2021,https://doi.org/10.5194/amt-14-173-2021, 2021
Short summary
Interpolation uncertainty of atmospheric temperature profiles
Alessandro Fassò, Michael Sommer, and Christoph von Rohden
Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020,https://doi.org/10.5194/amt-13-6445-2020, 2020
Short summary
Unsupervised classification of snowflake images using a generative adversarial network and K-medoids classification
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020,https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
An improved post-processing technique for automatic precipitation gauge time series
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020,https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary

Cited articles

Cho, J. Y. N., Newell, R. E., Anderson, B. E., Barrick, J. D. W., and Thornhill, K. L.: Characterizations of tropospheric turbulence and stability layers from aircraft observations, J. Geophys. Res., 108, 8784, https://doi.org/10.1029/2002JD002820, 2003.
Cornman, L. B., Morse, C. S., and Cunning, G.: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements, J. Aircraft, 32, 171–177, https://doi.org/10.2514/3.46697, 1995.
Drüe, C., Deimel, S., and Hoff, A.: A low-cost approach to derive upper-air wind measurements from ADS-B, 13th EMS Annual Meeting, Reading, UK, 9–13 September 2013, available at: http://presentations.copernicus.org/EMS2013-702_presentation.pdf (last access: 21 August 2015), 2013.
Frehlich, R. and Sharman, R.: Climatology of velocity and tempera-ture turbulence statistics determined from rawinsonde and ACARS/AMDAR data, J. Appl. Meteorol. Clim., 49, 1149–1169, https://doi.org/10.1175/2010JAMC2196.1, 2010.
Gill, P. G. and Buchanan, P.: An ensemble based turbulence forecasting system, Meteorol. Appl., 21, 12–19, https://doi.org/10.1002/met.1373, 2014.
Publications Copernicus
Download
Short summary
This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.
Citation