Articles | Volume 9, issue 9
Atmos. Meas. Tech., 9, 4487–4501, 2016
https://doi.org/10.5194/amt-9-4487-2016
Atmos. Meas. Tech., 9, 4487–4501, 2016
https://doi.org/10.5194/amt-9-4487-2016

Research article 12 Sep 2016

Research article | 12 Sep 2016

High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

Wei Tang et al.

Related authors

IMPROVED TOPOGRAPHIC MAPPING IN VEGETATED MOUNTAINOUS AREAS BY HIGH-RESOLUTION RADARGRAMMETRY-ASSISTED SAR INTERFEROMETRY
Y. Dong, L. Zhang, and M. Liao
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 133–139, https://doi.org/10.5194/isprs-annals-V-3-2020-133-2020,https://doi.org/10.5194/isprs-annals-V-3-2020-133-2020, 2020

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021,https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021,https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899, https://doi.org/10.5194/amt-13-6889-2020,https://doi.org/10.5194/amt-13-6889-2020, 2020
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020,https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary

Cited articles

Basili, P., Bonafoni, S., Ciotti, P., and Pierdicca, N.: Modeling and Sensing the Vertical Structure of the Atmospheric Path Delay by Microwave Radiometry to Correct SAR Interferograms, IEEE T. Geosci. Remote, 52, 1324–1335, 2014.
Beauducel, F., Briole, P., and Froger, J.-L.: Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna (1992–1998): Deformation or tropospheric effect?, J. Geophys. Res., 105, 16391–16402, 2000.
Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J., and Parker, D. J.: Statistical comparison of InSAR tropospheric correction techniques, Remote Sens. Environ., 170, 40–47, 2015.
Bennartz, R. and Fischer, J.: Retrieval of columnar water vapour over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer, Remote Sens. Environ., 78, 274–283, 2001.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology : Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97, 15787–15801, 1992.
Download
Short summary
Interferometric radar meteorology (IRM) is a new technique for meteorological applications and atmospheric studies. It can be used to study the water vapour content in the atmosphere with a spatial resolution of 20 m and an accuracy of about 2 mm. This high spatial resolution of water vapour distribution can be important for short-scale weather forecasting and climate research.