Articles | Volume 9, issue 12
https://doi.org/10.5194/amt-9-6013-2016
https://doi.org/10.5194/amt-9-6013-2016
Research article
 | 
14 Dec 2016
Research article |  | 14 Dec 2016

Deriving clear-sky longwave spectral flux from spaceborne hyperspectral radiance measurements: a case study with AIRS observations

Xiuhong Chen and Xianglei Huang

Related authors

The Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) principal component-based cloud mask: A simulation experiment
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463,https://doi.org/10.5194/egusphere-2023-2463, 2023
Short summary
Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm
Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang
Atmos. Meas. Tech., 11, 529–550, https://doi.org/10.5194/amt-11-529-2018,https://doi.org/10.5194/amt-11-529-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024,https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024,https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Bayesian cloud-top phase determination for Meteosat Second Generation
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024,https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary

Cited articles

Ackerman, S. A. and Strabala, K. I.: Satellite remote sensing of H2SO4 aerosol using the 8- to 12-µm window region: Application to Mount Pinatubo, J. Geophys. Res.-Atmos., 99, 18639–18649, 1994.
Amato, U., Lavanant, L., Liuzzi, G., Masiello, G., Serio, C., Stuhlmann, R., and Tjemkes, S. A.: Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation, Atmos. Meas. Tech., 7, 3355–3372, https://doi.org/10.5194/amt-7-3355-2014, 2014.
Anderson, G. P., Berk, A., Chetwynd, J. H., Harder, J., Fontenla, J. M., Shettle, E. P., Saunders, R., Snell, H. E., Pilewskie, P., Kindel, B. C., Gardner, J. A., Hoke, M . L., Felde, G. W., Lockwood, R. B., and Acharya, P. K.: Using the MODTRAN5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, Proc. SPIE 6565, 65651O, https://doi.org/10.1117/12.721184, 2007.
ASDC: CERES data, NASA Atmospheric Science Data Center, available at: https://eosweb.larc.nasa.gov/HORDERBIN/HTML_Start.cgi, 2016.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. Dl, Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing system, IEEE T. Geosci. Remote Sens., 41, 253–264, 2003.
Download
Short summary
We explore algorithms of estimating spectral flux over the entire longwave spectrum solely from hyperspectral radiance observations using AIRS data as an example. This is different from the traditional approach of estimating broadband flux from satellite observations in two ways: (1) no other remote sensing data sets are needed, and (2) the spectral details of the broadband flux can be derived. This study shows that the hyperspectral radiances can be used to directly obtain spectral flux.