Articles | Volume 10, issue 4
https://doi.org/10.5194/amt-10-1335-2017
https://doi.org/10.5194/amt-10-1335-2017
Research article
 | 
06 Apr 2017
Research article |  | 06 Apr 2017

Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera

Christophe Praz, Yves-Alain Roulet, and Alexis Berne

Related authors

Identification of blowing snow particles in images from a Multi-Angle Snowflake Camera
Mathieu Schaer, Christophe Praz, and Alexis Berne
The Cryosphere, 14, 367–384, https://doi.org/10.5194/tc-14-367-2020,https://doi.org/10.5194/tc-14-367-2020, 2020
Short summary
Precipitation at Dumont d'Urville, Adélie Land, East Antarctica: the APRES3 field campaigns dataset
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018,https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Unraveling hydrometeor mixtures in polarimetric radar measurements
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018,https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Adjustment of 1 min rain gauge time series using co-located drop size distribution and wind speed measurements
Arianna Cauteruccio, Mattia Stagnaro, Luca G. Lanza, and Pak-Wai Chan
Atmos. Meas. Tech., 16, 4155–4163, https://doi.org/10.5194/amt-16-4155-2023,https://doi.org/10.5194/amt-16-4155-2023, 2023
Short summary
Objective identification of pressure wave events from networks of 1-Hz, high-precision sensors
Luke Robert Allen, Sandra E. Yuter, Matthew Allen Miller, and Laura M. Tomkins
EGUsphere, https://doi.org/10.5194/egusphere-2023-1600,https://doi.org/10.5194/egusphere-2023-1600, 2023
Short summary
Estimating turbulent energy flux vertical profiles from uncrewed aircraft system measurements: exemplary results for the MOSAiC campaign
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023,https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Gap filling of turbulent heat fluxes over rice–wheat rotation croplands using the random forest model
Jianbin Zhang, Zexia Duan, Shaohui Zhou, Yubin Li, and Zhiqiu Gao
Atmos. Meas. Tech., 16, 2197–2207, https://doi.org/10.5194/amt-16-2197-2023,https://doi.org/10.5194/amt-16-2197-2023, 2023
Short summary
Estimation of raindrop size distribution and rain rate with infrared surveillance camera in dark conditions
Jinwook Lee, Jongyun Byun, Jongjin Baik, Changhyun Jun, and Hyeon-Joon Kim
Atmos. Meas. Tech., 16, 707–725, https://doi.org/10.5194/amt-16-707-2023,https://doi.org/10.5194/amt-16-707-2023, 2023
Short summary

Cited articles

Barthazy, E., Göke, S., Schefold, R., and Högl, D.: An optical array instrument for shape and fall velocity measurements of hydrometeors, J. Atmos. Ocean. Tech., 21, 1400–1416, 2004.
Bernauer, F., Hürkamp, K., Rühm, W., and Tschiersch, J.: Snow event classification with a 2D video disdrometer – A decision tree approach, Atmos. Res., 172, 186–195, 2016.
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016.
Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, 2006.
Chandrasekar, V., Keranen, R., Lim, S., and Moisseev, D.: Recent advances in classification of observations from dual polarization weather radars, Atmos. Res., 119, 97–111, https://doi.org/10.1016/j.atmosres.2011.08.014, 2013.
Download
Short summary
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling snowflakes and ice crystals. A method is proposed to automatically classify these pictures into six classes of snowflakes as well to estimate the degree of riming and to detect whether or not the particles are melting. Multinomial logistic regression is used with a manually classified reference set. The evaluation demonstrates the good and reliable performance of the proposed technique.