Articles | Volume 10, issue 8
Atmos. Meas. Tech., 10, 3093–3101, 2017
https://doi.org/10.5194/amt-10-3093-2017
Atmos. Meas. Tech., 10, 3093–3101, 2017
https://doi.org/10.5194/amt-10-3093-2017
Research article
25 Aug 2017
Research article | 25 Aug 2017

Optimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observations

Christoph Franzen et al.

Related authors

Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020,https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
High-resolution typhoon precipitation integrations using satellite infrared observations and multisource data
You Zhao, Chao Liu, Di Di, Ziqiang Ma, and Shihao Tang
Atmos. Meas. Tech., 15, 2791–2805, https://doi.org/10.5194/amt-15-2791-2022,https://doi.org/10.5194/amt-15-2791-2022, 2022
Short summary
Continuous temperature soundings at the stratosphere and lower mesosphere with a ground-based radiometer considering the Zeeman effect
Witali Krochin​​​​​​​, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022,https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2
Lu Yao, Yi Liu, Dongxu Yang, Zhaonan Cai, Jing Wang, Chao Lin, Naimeng Lu, Daren Lyu, Longfei Tian, Maohua Wang, Zengshan Yin, Yuquan Zheng, and Sisi Wang
Atmos. Meas. Tech., 15, 2125–2137, https://doi.org/10.5194/amt-15-2125-2022,https://doi.org/10.5194/amt-15-2125-2022, 2022
Short summary
Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images
Biao Tong, Xiangfei Sun, Jiyang Fu, Yuncheng He, and Pakwai Chan
Atmos. Meas. Tech., 15, 1829–1848, https://doi.org/10.5194/amt-15-1829-2022,https://doi.org/10.5194/amt-15-1829-2022, 2022
Short summary
Time evolution of temperature profiles retrieved from 13 years of infrared atmospheric sounding interferometer (IASI) data using an artificial neural network
Marie Bouillon, Sarah Safieddine, Simon Whitburn, Lieven Clarisse, Filipe Aires, Victor Pellet, Olivier Lezeaux, Noëlle A. Scott, Marie Doutriaux-Boucher, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 1779–1793, https://doi.org/10.5194/amt-15-1779-2022,https://doi.org/10.5194/amt-15-1779-2022, 2022
Short summary

Cited articles

Abbott, T. M., Aspin, C., Sorensen, A. N., Norregaard, P., Andersen, J., Andersen, M. I., van der Bliek, N. S., Clasen, J. W., Cox, G. C., Klougart, J., Larsen, H. H., Michaelsen, N., Noel, B., Olofsson, G., Perez, C., and Schwarz, H. E.: SWIR at the Nordic Optical Telescope: NOTCam, in: Optical and IR Telescope Instrumentation and Detectors, Vol. 4008, edited by: Iye, M. and Moorwood, A. F., SPIE Proc., Munich, 2000.
Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, 1988.
Bittner, M., Höppner, K., Pilger, C., and Schmidt, C.: Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards, Nat. Hazards Earth Syst. Sci., 10, 1431–1442, https://doi.org/10.5194/nhess-10-1431-2010, 2010.
Brent, R. P.: Algorithms for Minimization Without Derivatives, Dover Publications, Mineola, NY, 1973.
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99, 2007.
Download
Short summary
We discuss a technique to extract the hydroxyl (OH) airglow signal from routine astronomical spectroscopic observations from the Nordic Optical Telescope. Emission spectra from the vibrational manifold from v′ = 9 down to v′ = 3. The fitted rotational temperature distribution with v′ agrees with model conditions and the preponderance of previous work. We highlight the potential for archived and future observations with unprecedented spatial and temporal resolutions.