Articles | Volume 11, issue 8
https://doi.org/10.5194/amt-11-4617-2018
https://doi.org/10.5194/amt-11-4617-2018
Research article
 | 
09 Aug 2018
Research article |  | 09 Aug 2018

Effects of temperature, pressure, and carrier gases on the performance of an aerosol particle mass analyser

Ta-Chih Hsiao, Li-Hao Young, Yu-Chun Tai, and Po-Kai Chang

Related authors

3-D AIR POLLUTION ESTIMATION USING A HYBRID SPATIAL MODEL: A CASE STUDY OF ZHUNAN-MIAOLI AREA, TAIWAN
C. W. Hsu, Y. R. Chern, J. J. Su, C. Wijaya, Y. C. Chen, S. C. Lung, T. C. Hsiao, T. A. Teo, I. L. Shih, and C. D. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W8-2023, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-301-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-301-2024, 2024

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A comprehensive evaluation of enhanced temperature influence on gas and aerosol chemistry in the lamp-enclosed oxidation flow reactor (OFR) system
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024,https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024,https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Surface equilibrium vapor pressure of organic nanoparticles measured from the dynamic-aerosol-size electrical mobility spectrometer
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024,https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Quality assurance and quality control of atmospheric organosulfates measured using hydrophilic interaction liquid chromatography (HILIC)
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024,https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Micro-PINGUIN: microtiter-plate-based instrument for ice nucleation detection in gallium with an infrared camera
Corina Wieber, Mads Rosenhøj Jeppesen, Kai Finster, Claus Melvad, and Tina Šantl-Temkiv
Atmos. Meas. Tech., 17, 2707–2719, https://doi.org/10.5194/amt-17-2707-2024,https://doi.org/10.5194/amt-17-2707-2024, 2024
Short summary

Cited articles

Allen, M. D. and Raabe, O. G.: Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus, Aerosol Sci. Technol., 4, 269–286, 1985. 
Bau, S., Bémer, D., Grippari, F., Appert-Collin, J.-C., and Thomas, D.: Determining the effective density of airborne nanoparticles using multiple charging correction in a tandem DMA/ELPI setup, J. Nanopart. Res., 16, 1–13, 2014. 
Broday, D. M. and Rosenzweig, R.: Deposition of fractal-like soot aggregates in the human respiratory tract, J. Aerosol Sci., 42, 372–386, 2011. 
Chuang, H.-C., Hsiao, T.-C., Wang, S.-H., Tsay, S.-C., and Lin, N.-H.: Characterization of Particulate Matter Profiling and Alveolar Deposition from Biomass Burning in Northern Thailand: The 7-SEAS Study, Aerosol Air Qual. Res., 16, 2581–2602, 2016. 
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Sci. Technol., 38, 1185–1205, 2004. 
Download
Short summary
Ambient pressure and temperature can vary with location, which implies that classifying aerosol particle mass using APM might be influenced at high-altitude sites. On the other hand, when using the APM as a particle classifier coupled with inductively coupled plasma mass spectrometry, argon would be required as the carrier gas. Therefore, air, oxygen and carbon dioxide were selected as carrier gases to evaluate the effect of gas viscosity and the mean free path on the performance of APM.