Articles | Volume 11, issue 9
https://doi.org/10.5194/amt-11-5153-2018
https://doi.org/10.5194/amt-11-5153-2018
Research article
 | 
11 Sep 2018
Research article |  | 11 Sep 2018

Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting

Biyan Chen, Wujiao Dai, Zhizhao Liu, Lixin Wu, Cuilin Kuang, and Minsi Ao

Related authors

Assessing the performance of troposphere tomographic modeling using multi-source water vapor data during Hong Kong's rainy season from May to October 2013
Biyan Chen and Zhizhao Liu
Atmos. Meas. Tech., 9, 5249–5263, https://doi.org/10.5194/amt-9-5249-2016,https://doi.org/10.5194/amt-9-5249-2016, 2016
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024,https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024,https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024,https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Accounting for the effect of aerosols in GHGSat methane retrieval
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024,https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Diego Loyola, Hanlim Lee, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-1137,https://doi.org/10.5194/egusphere-2024-1137, 2024
Short summary

Cited articles

Ahrens, C. and Samson, P.: Extreme weather and climate, 1 Edn., 22 February 2010, Brooks Cole, United States of America, 2011.
Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., and Heck, B.: Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data, IEEE Trans. Geosci. Remote Sens., 53, 3764–3771, https://doi.org/10.1109/TGRS.2014.2382713, 2015.
Alshawaf, F., Balidakis, K., Dick, G., Heise, S., and Wickert, J.: Estimating trends in atmospheric water vapor and temperature time series over Germany, Atmos. Meas. Tech., 10, 3117–3132, https://doi.org/10.5194/amt-10-3117-2017, 2017.
Askne, J. and Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22, 379–386, 1987.
Download
Short summary
The lack of collocated meteorological data at GNSS stations makes it difficult to take full advantage of GNSS observations for weather studies. This research demonstrates the potentials of retrieving accurate PWV from GNSS using adjacent synoptic data and generating high-quality PWV maps from the GNSS network for weather prediction in near-real time. Results also demonstrate that it's possible to reveal the moisture advection, transportation and convergence during heavy rainfalls using PWV maps.