Articles | Volume 11, issue 9
https://doi.org/10.5194/amt-11-5153-2018
https://doi.org/10.5194/amt-11-5153-2018
Research article
 | 
11 Sep 2018
Research article |  | 11 Sep 2018

Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting

Biyan Chen, Wujiao Dai, Zhizhao Liu, Lixin Wu, Cuilin Kuang, and Minsi Ao

Related authors

Assessing the performance of troposphere tomographic modeling using multi-source water vapor data during Hong Kong's rainy season from May to October 2013
Biyan Chen and Zhizhao Liu
Atmos. Meas. Tech., 9, 5249–5263, https://doi.org/10.5194/amt-9-5249-2016,https://doi.org/10.5194/amt-9-5249-2016, 2016
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique
Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang
Atmos. Meas. Tech., 16, 2237–2262, https://doi.org/10.5194/amt-16-2237-2023,https://doi.org/10.5194/amt-16-2237-2023, 2023
Short summary
Michelson Interferometer for Passive Atmospheric Sounding Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía version 8 retrieval of nitric oxide and lower-thermospheric temperature
Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Manuel López-Puertas, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 2167–2196, https://doi.org/10.5194/amt-16-2167-2023,https://doi.org/10.5194/amt-16-2167-2023, 2023
Short summary
Near-real-time detection of unexpected atmospheric events using principal component analysis on the Infrared Atmospheric Sounding Interferometer (IASI) radiances
Adrien Vu Van, Anne Boynard, Pascal Prunet, Dominique Jolivet, Olivier Lezeaux, Patrice Henry, Claude Camy-Peyret, Lieven Clarisse, Bruno Franco, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 16, 2107–2127, https://doi.org/10.5194/amt-16-2107-2023,https://doi.org/10.5194/amt-16-2107-2023, 2023
Short summary
Differences in MOPITT surface level CO retrievals and trends from Level 2 and Level 3 products in coastal grid boxes
Ian Ashpole and Aldona Wiacek
Atmos. Meas. Tech., 16, 1923–1949, https://doi.org/10.5194/amt-16-1923-2023,https://doi.org/10.5194/amt-16-1923-2023, 2023
Short summary
Updated merged SAGE-CCI-OMPS+ dataset for the evaluation of ozone trends in the stratosphere
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023,https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary

Cited articles

Ahrens, C. and Samson, P.: Extreme weather and climate, 1 Edn., 22 February 2010, Brooks Cole, United States of America, 2011.
Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., and Heck, B.: Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data, IEEE Trans. Geosci. Remote Sens., 53, 3764–3771, https://doi.org/10.1109/TGRS.2014.2382713, 2015.
Alshawaf, F., Balidakis, K., Dick, G., Heise, S., and Wickert, J.: Estimating trends in atmospheric water vapor and temperature time series over Germany, Atmos. Meas. Tech., 10, 3117–3132, https://doi.org/10.5194/amt-10-3117-2017, 2017.
Askne, J. and Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22, 379–386, 1987.
Download
Short summary
The lack of collocated meteorological data at GNSS stations makes it difficult to take full advantage of GNSS observations for weather studies. This research demonstrates the potentials of retrieving accurate PWV from GNSS using adjacent synoptic data and generating high-quality PWV maps from the GNSS network for weather prediction in near-real time. Results also demonstrate that it's possible to reveal the moisture advection, transportation and convergence during heavy rainfalls using PWV maps.