Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1905–1911, 2019
https://doi.org/10.5194/amt-12-1905-2019

Special issue: Advances in cavity-based techniques for measurements of atmospheric...

Atmos. Meas. Tech., 12, 1905–1911, 2019
https://doi.org/10.5194/amt-12-1905-2019

Research article 25 Mar 2019

Research article | 25 Mar 2019

Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser

Yufeng Pan et al.

Related authors

Laser frequency stabilization based on a universal sub-Doppler NICE-OHMS instrumentation for the potential application in atmospheric lidar
Yueting Zhou, Jianxin Liu, Songjie Guo, Gang Zhao, Weiguang Ma, Zhensong Cao, Lei Dong, Lei Zhang, Wangbao Yin, Yongqian Wu, Lianxuan Xiao, Ove Axner, and Suotang Jia
Atmos. Meas. Tech., 12, 1807–1814, https://doi.org/10.5194/amt-12-1807-2019,https://doi.org/10.5194/amt-12-1807-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020,https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020,https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
A thermal-dissociation–cavity ring-down spectrometer (TD-CRDS) for the detection of organic nitrates in gas and particle phases
Natalie I. Keehan, Bellamy Brownwood, Andrey Marsavin, Douglas A. Day, and Juliane L. Fry
Atmos. Meas. Tech., 13, 6255–6269, https://doi.org/10.5194/amt-13-6255-2020,https://doi.org/10.5194/amt-13-6255-2020, 2020
Short summary
Interference from alkenes in chemiluminescent NOx measurements
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020,https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-335,https://doi.org/10.5194/amt-2020-335, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Black, E. D.: An introduction to pound–drever–hall laser frequency stabilization, Am. J. Phys., 69, 79–87, 2000. 
Chen, K., Gong, Z., and Yu, Q.: Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection, Sensor. Actuat. A Phys., 274, 184–188, 2018. 
Drewer, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, F. M., Munley, A. J., and Ward, H.: Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B, 31, 97–105, 1983. 
Gherman, T. and Romanini, D.: Mode-locked cavity- enhanced absorption spectroscopy, Opt. Express, 10, 1033–1042, 2002. 
He, Q., Zheng, C., Lou, M., Ye, W., Wang, Y., and Tittel, F. K.: Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser, Opt. Express, 26, 15436–15444, 2018. 
Download
Short summary
Photoacoustic spectroscopy has one important advantage: its sensitivity is proportional to the excitation light power and thus the performance of PAS-based sensors can benefit from a high excitation light power. We developed a cavity-enhanced photoacoustic sensor in which a photoacoustic cell was placed into a high-finesse optical cavity. A signal gain factor of 166 was observed. For C2H2 detection, a 1σ detection limit of 0.45 ppmV was obtained at atmospheric pressure with a 1 s averaging time.