Articles | Volume 12, issue 6
Atmos. Meas. Tech., 12, 3335–3349, 2019
Atmos. Meas. Tech., 12, 3335–3349, 2019

Research article 24 Jun 2019

Research article | 24 Jun 2019

Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds

Alessandro Battaglia and Pavlos Kollias

Related authors

Impact of second trip echoes for space-borne high PRF nadir-looking W-band cloud radars
Alessandro Battaglia
Atmos. Meas. Tech. Discuss.,,, 2021
Preprint under review for AMT
Short summary
Mind the gap – Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars
Alessandro Battaglia, Pavlos Kollias, Ranvir Dhillon, Katia Lamer, Marat Khairoutdinov, and Daniel Watters
Atmos. Meas. Tech., 13, 4865–4883,,, 2020
Short summary
Doppler W-band polarization diversity space-borne radar simulator for wind studies
Alessandro Battaglia, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 11, 5965–5979,,, 2018
Short summary
G band atmospheric radars: new frontiers in cloud physics
A. Battaglia, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty
Atmos. Meas. Tech., 7, 1527–1546,,, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
Multifrequency radar observations of clouds and precipitation including the G-band
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629,,, 2021
Short summary
Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes
Richard Roy, Matthew Lebsock, and Marcin Kurowski
Atmos. Meas. Tech. Discuss.,,, 2021
Revised manuscript accepted for AMT
Short summary
Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979,,, 2021
Short summary
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221,,, 2021
Short summary
Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045,,, 2020
Short summary

Cited articles

Aires, F., Prigent, C., Buehler, S. A., Eriksson, P., Milz, M., and Crewell, S.: Towards more realistic hypotheses for the information content analysis of cloudy/precipitating situations – Application to a hyperspectral instrument in the microwave, Q. J. Roy. Meteor. Soc., 145, 1–14,, 2019. a
Anderson, E.: Statement of guidance for global numerical weather prediction (NWP), Tech. rep., World Meteorological Organization, available at: (last access: 20 June 2019), 2014. a
Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies, J. Atmos. Sci., 66, 2888–2899,, 2009. a, b
Battaglia, A. and Delanöe, J.: Synergies and complementarities of CloudSat-CALIPSO snow observations, J. Geophys. Res., 118, 721–731,, 2013. a
Battaglia, A. and Kollias, P.: Error Analysis of a Conceptual Cloud Doppler Stereoradar with Polarization Diversity for Better Understanding Space Applications, J. Atmos. Ocean. Tech., 32, 1298–1319,, 2014. a, b
Short summary
This work investigates the potential of an innovative differential absorption radar for retrieving relative humidity inside ice clouds. The radar exploits the strong spectral dependence of the water vapour absorption for frequencies close to the 183 GHz water vapour band. Results show that observations from a system with 4–6 frequencies can provide novel information for understanding the formation and growth of ice crystals.