Articles | Volume 12, issue 7
Atmos. Meas. Tech., 12, 3841–3851, 2019
https://doi.org/10.5194/amt-12-3841-2019
Atmos. Meas. Tech., 12, 3841–3851, 2019
https://doi.org/10.5194/amt-12-3841-2019

Research article 12 Jul 2019

Research article | 12 Jul 2019

Separation and detection of aqueous atmospheric aerosol mimics using supercritical fluid chromatography–mass spectrometry

Daisy N. Grace et al.

Related authors

OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison
S. M. Griffith, R. F. Hansen, S. Dusanter, P. S. Stevens, M. Alaghmand, S. B. Bertman, M. A. Carroll, M. Erickson, M. Galloway, N. Grossberg, J. Hottle, J. Hou, B. T. Jobson, A. Kammrath, F. N. Keutsch, B. L. Lefer, L. H. Mielke, A. O'Brien, P. B. Shepson, M. Thurlow, W. Wallace, N. Zhang, and X. L. Zhou
Atmos. Chem. Phys., 13, 5403–5423, https://doi.org/10.5194/acp-13-5403-2013,https://doi.org/10.5194/acp-13-5403-2013, 2013

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
On the calibration of FIGAERO-ToF-CIMS: importance and impact of calibrant delivery for the particle-phase calibration
Arttu Ylisirniö, Luis M. F. Barreira, Iida Pullinen, Angela Buchholz, John Jayne, Jordan E. Krechmer, Douglas R. Worsnop, Annele Virtanen, and Siegfried Schobesberger
Atmos. Meas. Tech., 14, 355–367, https://doi.org/10.5194/amt-14-355-2021,https://doi.org/10.5194/amt-14-355-2021, 2021
Short summary
A single-beam photothermal interferometer for in situ measurements of aerosol light absorption
Bradley Visser, Jannis Röhrbein, Peter Steigmeier, Luka Drinovec, Griša Močnik, and Ernest Weingartner
Atmos. Meas. Tech., 13, 7097–7111, https://doi.org/10.5194/amt-13-7097-2020,https://doi.org/10.5194/amt-13-7097-2020, 2020
Short summary
Aqueous particle generation with a 3D printed nebulizer
Michael Rösch and Daniel J. Cziczo
Atmos. Meas. Tech., 13, 6807–6812, https://doi.org/10.5194/amt-13-6807-2020,https://doi.org/10.5194/amt-13-6807-2020, 2020
Short summary
A new method for operating a continuous-flow diffusion chamber to investigate immersion freezing: assessment and performance study
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020,https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Characterization of a non-thermal plasma source for use as a mass specrometric calibration tool and non-radioactive aerosol charger
Christian Tauber, David Schmoll, Johannes Gruenwald, Sophia Brilke, Peter Josef Wlasits, Paul Martin Winkler, and Daniela Wimmer
Atmos. Meas. Tech., 13, 5993–6006, https://doi.org/10.5194/amt-13-5993-2020,https://doi.org/10.5194/amt-13-5993-2020, 2020
Short summary

Cited articles

Aiona, P. K., Lee, H. J., Leslie, R., Lin, P., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Photochemistry of products of the aqueous reaction of methylglyoxal with ammonium sulfate, ACS Earth Space Chem., 1, 522–532, https://doi.org/10.1021/acsearthspacechem.7b00075, 2017. a, b, c, d, e, f
Amarnath, V., Valentine, W. M., Amarnath, K., Eng, M. A., and Graham, D. G.: The mechanism of nucleophilic substitution of alkylpyrroles in the presence of oxygen, Chem. Res. Toxicol., 7, 56–61, https://doi.org/10.1021/tx00037a008, 1994. a, b
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. a
Berger, T. A. and Deye, J. F.: Role of additives in packed column supercritical fluid chromatography: Suppression of solute ionization, J. Chromatogr. A, 547, 377–392, https://doi.org/10.1016/S0021-9673(01)88661-1, 1991. a
Bernal, J. L., Martín, M. T., and Toribio, L.: Supercritical fluid chromatography in food analysis, J. Chromatogr. A, 1313, 24–36, https://doi.org/10.1016/j.chroma.2013.07.022, 2013. a, b, c
Download
Short summary
The identification and quantification of compounds within an atmospheric particle can be difficult to achieve. We present a supercritical fluid chromatography method to separate these compounds prior to mass spectrometry analysis. The aqueous methylglyoxal–ammonium sulfate system was used as a proxy for atmospheric aerosol; polar columns combined with a carbon dioxide and methanol mobile phase provided the most efficient separation. This method can be extended to other atmospheric systems.