Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3841-2019
https://doi.org/10.5194/amt-12-3841-2019
Research article
 | 
12 Jul 2019
Research article |  | 12 Jul 2019

Separation and detection of aqueous atmospheric aerosol mimics using supercritical fluid chromatography–mass spectrometry

Daisy N. Grace, Melissa B. Sebold, and Melissa M. Galloway

Related authors

OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison
S. M. Griffith, R. F. Hansen, S. Dusanter, P. S. Stevens, M. Alaghmand, S. B. Bertman, M. A. Carroll, M. Erickson, M. Galloway, N. Grossberg, J. Hottle, J. Hou, B. T. Jobson, A. Kammrath, F. N. Keutsch, B. L. Lefer, L. H. Mielke, A. O'Brien, P. B. Shepson, M. Thurlow, W. Wallace, N. Zhang, and X. L. Zhou
Atmos. Chem. Phys., 13, 5403–5423, https://doi.org/10.5194/acp-13-5403-2013,https://doi.org/10.5194/acp-13-5403-2013, 2013

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A comprehensive evaluation of enhanced temperature influence on gas and aerosol chemistry in the lamp-enclosed oxidation flow reactor (OFR) system
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024,https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024,https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Surface equilibrium vapor pressure of organic nanoparticles measured from the dynamic-aerosol-size electrical mobility spectrometer
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024,https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Quality assurance and quality control of atmospheric organosulfates measured using hydrophilic interaction liquid chromatography (HILIC)
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024,https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Micro-PINGUIN: microtiter-plate-based instrument for ice nucleation detection in gallium with an infrared camera
Corina Wieber, Mads Rosenhøj Jeppesen, Kai Finster, Claus Melvad, and Tina Šantl-Temkiv
Atmos. Meas. Tech., 17, 2707–2719, https://doi.org/10.5194/amt-17-2707-2024,https://doi.org/10.5194/amt-17-2707-2024, 2024
Short summary

Cited articles

Aiona, P. K., Lee, H. J., Leslie, R., Lin, P., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Photochemistry of products of the aqueous reaction of methylglyoxal with ammonium sulfate, ACS Earth Space Chem., 1, 522–532, https://doi.org/10.1021/acsearthspacechem.7b00075, 2017. a, b, c, d, e, f
Amarnath, V., Valentine, W. M., Amarnath, K., Eng, M. A., and Graham, D. G.: The mechanism of nucleophilic substitution of alkylpyrroles in the presence of oxygen, Chem. Res. Toxicol., 7, 56–61, https://doi.org/10.1021/tx00037a008, 1994. a, b
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. a
Berger, T. A. and Deye, J. F.: Role of additives in packed column supercritical fluid chromatography: Suppression of solute ionization, J. Chromatogr. A, 547, 377–392, https://doi.org/10.1016/S0021-9673(01)88661-1, 1991. a
Bernal, J. L., Martín, M. T., and Toribio, L.: Supercritical fluid chromatography in food analysis, J. Chromatogr. A, 1313, 24–36, https://doi.org/10.1016/j.chroma.2013.07.022, 2013. a, b, c
Download
Short summary
The identification and quantification of compounds within an atmospheric particle can be difficult to achieve. We present a supercritical fluid chromatography method to separate these compounds prior to mass spectrometry analysis. The aqueous methylglyoxal–ammonium sulfate system was used as a proxy for atmospheric aerosol; polar columns combined with a carbon dioxide and methanol mobile phase provided the most efficient separation. This method can be extended to other atmospheric systems.