Articles | Volume 12, issue 12
https://doi.org/10.5194/amt-12-6721-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-6721-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the zero-level offset in the GOSAT TANSO-FTS O2 A band and the quality of solar-induced chlorophyll fluorescence (SIF): comparison of SIF between GOSAT and OCO-2
Haruki Oshio
CORRESPONDING AUTHOR
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba, 305-8506, Japan
Yukio Yoshida
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba, 305-8506, Japan
Tsuneo Matsunaga
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba, 305-8506, Japan
Related authors
No articles found.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Yu Someya, Yukio Yoshida, Hirofumi Ohyama, Shohei Nomura, Akihide Kamei, Isamu Morino, Hitoshi Mukai, Tsuneo Matsunaga, Joshua L. Laughner, Voltaire A. Velazco, Benedikt Herkommer, Yao Té, Mahesh Kumar Sha, Rigel Kivi, Minqiang Zhou, Young Suk Oh, Nicholas M. Deutscher, and David W. T. Griffith
Atmos. Meas. Tech., 16, 1477–1501, https://doi.org/10.5194/amt-16-1477-2023, https://doi.org/10.5194/amt-16-1477-2023, 2023
Short summary
Short summary
The updated retrieval algorithm for the Greenhouse gases Observing SATellite level 2 product is presented. The main changes in the algorithm from the previous one are the treatment of cirrus clouds, the degradation model of the sensor, solar irradiance, and gas absorption coefficient tables. The retrieval results showed improvements in fitting accuracy and an increase in the data amount over land. On the other hand, there are still large biases of XCO2 which should be corrected over the ocean.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Jiye Zeng, Tsuneo Matsunaga, and Tomoko Shirai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-71, https://doi.org/10.5194/essd-2022-71, 2022
Manuscript not accepted for further review
Short summary
Short summary
We have extracted the increase rates of ocean CO2 with three types of machine learning models. The results are new and important because scarce data made it difficult to use machine learning models for for ocean CO2 reconstruction and oceanic CO2 sink estimate. One of the approaches is to remove the trend in CO2 data obtained in multiple-years so that the models can learn the non-linear dependence of CO2 on seawater properties better.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Hirofumi Ohyama, Isamu Morino, Voltaire A. Velazco, Theresa Klausner, Gerry Bagtasa, Matthäus Kiel, Matthias Frey, Akihiro Hori, Osamu Uchino, Tsuneo Matsunaga, Nicholas M. Deutscher, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Sally E. Pusede, Alina Fiehn, Anke Roiger, Michael Lichtenstern, Hans Schlager, Pao K. Wang, Charles C.-K. Chou, Maria Dolores Andrés-Hernández, and John P. Burrows
Atmos. Meas. Tech., 13, 5149–5163, https://doi.org/10.5194/amt-13-5149-2020, https://doi.org/10.5194/amt-13-5149-2020, 2020
Short summary
Short summary
Column-averaged dry-air mole fractions of CO2 and CH4 measured by a solar viewing portable Fourier transform spectrometer (EM27/SUN) were validated with in situ profile data obtained during the transfer flights of two aircraft campaigns. Atmospheric dynamical properties based on ERA5 and WRF-Chem were used as criteria for selecting the best aircraft profiles for the validation. The resulting air-mass-independent correction factors for the EM27/SUN data were 0.9878 for CO2 and 0.9829 for CH4.
Cited articles
Cerovic, Z. G., Goulas, Y., Gorbunov, M., Briantais, J.-M., Camenen, L., and
Moya, I.: Fluorosensing of water stress in plants: Diurnal changes of the
mean lifetime and yield of chlorophyll fluorescence, measured simultaneously
and at distance with a τ-LIDAR and a modified PAM-fluorimeter, in
maize, sugar beet, and kalanchoë, Remote Sens. Environ., 58, 311–321,
https://doi.org/10.1016/S0034-4257(96)00076-4, 1996.
Didan, K.: MYD13A3 MODIS/Aqua Vegetation Indices Monthly L3 Global 1km SIN
Grid V006, NASA EOSDIS LP DAAC, https://doi.org/10.5067/MODIS/MYD13A3.006,
2015.
Du, S., Liu, L., Liu, X., Zhang, X., Zhang, X., Bi, Y., and Zhang, L.:
Retrieval of global terrestrial solar-induced chlorophyll fluorescence from
TanSat satellite, Sci. Bull., 63, 1502–1512,
https://doi.org/10.1016/j.scib.2018.10.003, 2018.
Evain, S., Flexas, J., and Moya, I.: A new instrument for passive remote
sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and
their relationship with photosynthesis and chlorophyll fluorescence, Remote
Sens. Environ., 91, 175–185, https://doi.org/10.1016/j.rse.2004.03.012,
2004.
Flexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya,
I., Osmond, C. B., and Medrano, H.: Steady-state chlorophyll fluorescence
(Fs) measurements as a tool to follow variations of net CO2
assimilation and stomatal conductance during water-stress in C3 plants,
Physiol. Plantarum, 114, 231–240,
https://doi.org/10.1034/j.1399-3054.2002.1140209.x, 2002.
Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chlorophyll
fluorescence from atmospheric scattering effects in O2 A-band spectra
of reflected sun-light, Geophys. Res. Lett., 38, L03801,
https://doi.org/10.1029/2010GL045896, 2011a.
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S.,
Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New
global observations of the terrestrial carbon cycle from GOSAT: Patterns of
plant fluorescence with gross primary productivity, Geophys. Res. Lett., 38,
L17706, https://doi.org/10.1029/2011GL048738, 2011b.
Frankenberg, C., O'Dell, C., Guanter, L., and McDuffie, J.: Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals, Atmos. Meas. Tech., 5, 2081–2094, https://doi.org/10.5194/amt-5-2081-2012, 2012.
Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler,
P., Pollock, R., and Taylor, T. E.: Prospects for chlorophyll fluorescence
remote sensing from the Orbiting Carbon Observatory-2, Remote Sens.
Environ., 147, 1–12, https://doi.org/10.1016/j.rse.2014.02.007, 2014.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra + Aqua Land Cover Type
Yearly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MCD12Q1.006, 2015.
Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J.,
Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and global assessment of
terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote
Sens. Environ., 121, 236–251, https://doi.org/10.1016/j.rse.2012.02.006,
2012.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and Middleton, E. M.: First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, 8, 637–651, https://doi.org/10.5194/bg-8-637-2011, 2011.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Middleton, E. M., Campbell, P. K. E., Yoshida, Y., Kuze, A., and Corp, L. A.: Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT, Atmos. Meas. Tech., 5, 809–829, https://doi.org/10.5194/amt-5-809-2012, 2012.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Joiner, J., Yoshida, Y., Guanter, L., and Middleton, E. M.: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 9, 3939–3967, https://doi.org/10.5194/amt-9-3939-2016, 2016.
Kataoka, F., Crisp, D., Taylor, T. E., O'Dell, C. W., Kuze, A., Shiomi, K.,
Suto, H., Bruegge C., Schwandner F. M., Rosenberg, R., Chapsky, L., and Lee,
R. A. M.: The cross-calibration of spectral radiances and cross-validation
of CO2 estimates from GOSATand OCO-2, Remote Sens., 9, 1158, https://https://doi.org/10.3390/rs9111158, 2017.
Kobayashi, H., Baldocchi, D. D., Ryu, Y., Chen, Q., Ma, S., Osuna, J. L.,
and Ustin, S. L.: Modeling energy and carbon fluxes in a heterogeneous oak
woodland: A three-dimensional approach, Agr. Forest Meteorol., 152, 83–100,
https://doi.org/10.1016/j.agrformet.2011.09.008, 2012.
Koffi, E. N., Rayner, P. J., Norton, A. J., Frankenberg, C., and Scholze, M.: Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system, Biogeosciences, 12, 4067–4084, https://doi.org/10.5194/bg-12-4067-2015, 2015.
Köhler, P., Guanter, L., and Joiner, J.: A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data, Atmos. Meas. Tech., 8, 2589–2608, https://doi.org/10.5194/amt-8-2589-2015, 2015.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and
Landgraf, J.: Global retrievals of solar-induced chlorophyll fluorescence
with TROPOMI: first results and intersensor comparison to OCO-2, Geophys.
Res. Lett., 45, 10456–10463, https://doi.org/10.1029/2018GL079031, 2018a.
Köhler, P., Guanter, L., Kobayashi, H., Walther, S., and Yang, W.:
Assessing the potential of sun-induced fluorescence and the canopy
scattering coefficient to track large-scale vegetation dynamics in Amazon
forests, Remote Sens. Environ., 204, 769–785,
https://doi.org/10.1016/j.rse.2017.09.025, 2018b.
Kuze, A., Suto, H., Shiomi, K., Urabe, T., Nakajima, M., Yoshida, J., Kawashima, T., Yamamoto, Y., Kataoka, F., and Buijs, H.: Level 1 algorithms for TANSO on GOSAT: processing and on-orbit calibrations, Atmos. Meas. Tech., 5, 2447–2467, https://doi.org/10.5194/amt-5-2447-2012, 2012.
Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., Kataoka, F., Taylor, T. E., and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space, Atmos. Meas. Tech., 9, 2445–2461, https://doi.org/10.5194/amt-9-2445-2016, 2016.
Liu, L., Liu, X., Hu, J., and Guan, L.: Assessing the wavelength-dependent
ability of solar-induced chlorophyll fluorescence to estimate the GPP of
winter wheat at the canopy level, Int. J. Remote Sens., 38, 4396–4417,
https://doi.org/10.1080/01431161.2017.1320449, 2017.
Luo, X., Keenan, T. F., Fisher, J. B., Jiménez-Muñoz, J.-C., Chen,
J. M., Jiang, C., Ju, W., Perakalapudi, N.-V., Ryu, Y., and Tadić, J. M.:
The impact of the 2015/2016 El Niño on global photosynthesis using
satellite remote sensing, Phil. Trans. R. Soc, 373, 20170409,
https://doi.org/10.1098/rstb.2017.0409, 2018.
Madani, N., Kimball, J., Jones, L., Glassy, J., Reichle, R., and Ardizzone, J.:
SMAP L4 Carbon (L4C) product assessment, status and plans, SMAP Cal/Val
Workshop #8, 20–22 June, Amherst, USA, 2017.
Magney, T. S., Frankenberg, C., Fisher, J. B., Sun, Y., North, G. B., Davis,
T. S., Kornfeld, A., and Siebke, K.: Connecting active to passive
fluorescence with photosynthesis: a method for evaluating remote sensing
measurements of Chl fluorescence, New Phytol., 215, 1594–1608,
https://doi.org/10.1111/nph.14662, 2017.
Moya, I., Camenen, L., Evain, S., Goulas, Y., Cerovic, Z. G., Latouche, G.,
Flexas, J., and Ounis, A.: A new instrument for passive remote sensing 1.
Measurements of sunlight-induced chlorophyll fluorescence, Remote Sens.
Environ., 91, 186–197, https://doi.org/10.1016/j.rse.2004.02.012, 2004.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra + Aqua Leaf Area
Index/FPAR 4-day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes
DAAC, https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015.
Ounis, A., Evain, S., Flexas, J., Tosti, S., and Moya, I.: Adaptation of a
PAM-fluorometer for remote sensing of chlorophyll fluorescence, Photosynth.
Res., 68, 113–120, https://doi.org/10.1023/A:1011843131298, 2001.
Rascher, U., Agati, G., Alonso, L., Cecchi, G., Champagne, S., Colombo, R., Damm, A., Daumard, F., de Miguel, E., Fernandez, G., Franch, B., Franke, J., Gerbig, C., Gioli, B., Gómez, J. A., Goulas, Y., Guanter, L., Gutiérrez-de-la-Cámara, Ó., Hamdi, K., Hostert, P., Jiménez, M., Kosvancova, M., Lognoli, D., Meroni, M., Miglietta, F., Moersch, A., Moreno, J., Moya, I., Neininger, B., Okujeni, A., Ounis, A., Palombi, L., Raimondi, V., Schickling, A., Sobrino, J. A., Stellmes, M., Toci, G., Toscano, P., Udelhoven, T., van der Linden, S., and Zaldei, A.: CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands, Biogeosciences, 6, 1181–1198, https://doi.org/10.5194/bg-6-1181-2009, 2009.
Stoll, M.-P., Court, A. J., Smorenburg, K., Visser, H., Crocco, L., Heilimo,
J., and Honig, A.: FLEX: fluorescence explorer – a space mission for
screening vegetated areas in the Fraunhofer lines, in: Proc. SPIE 3868,
Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, 20–24 September, Florence,
Italy, 1999.
Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter,
L., Drewry, D. T., Verma, M., Porcar-Castell, A., Griffis, T. J., Gu, L.,
and Magney, T. S.: OCO-2 advances photosynthesis observation from space via
solar-induced chlorophyll fluorescence, Science, 358, eaam5747,
https://doi.org/10.1126/science.aam5747, 2017.
Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P.,
and Magney, T.: Overview of Solar-Induced chlorophyll Fluorescence (SIF)
from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison,
and global monitoring for GPP, Remote Sens. Environ., 209, 808–823,
https://doi.org/10.1016/j.rse.2018.02.016, 2018.
Verrelst, J., Van der Tol, C., Magnani, F., Sabater, N., Rivera, J. P.,
Mohammed, G., and Moreno, J.: Evaluating the predictive power of sun-induced
chlorophyll fluorescence to estimate net photosynthesis of vegetation
canopies: A SCOPE modeling study, Remote Sens. Environ., 176, 139–151,
https://doi.org/10.1016/j.rse.2016.01.018, 2016.
Widlowski, J.-L.: On the bias of instantaneous FAPAR estimates in
open-canopy forests, Agr. Forest Meteorol., 150, 1501–1522,
https://doi.org/10.1016/j.agrformet.2010.07.011, 2010.
Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., and Yokota, T.: Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4, 717–734, https://doi.org/10.5194/amt-4-717-2011, 2011.
Yoshida, Y., Kikuchi, N., and Yokota, T.: On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT, Atmos. Meas. Tech., 5, 2515–2523, https://doi.org/10.5194/amt-5-2515-2012, 2012.
Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G. C., Wunch, D., Roehl, C. M., Wennberg, P. O., Griffith, D. W. T., Deutscher, N. M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., and Yokota, T.: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas. Tech., 6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013, 2013.
Yoshida, Y., Eguchi, N., Ota, Y., Kikuchi, N., Nobuta, K., Aoki, T., and
Yokota, T.: Algorithm theoretical basis document (ATBD) for CO2,
CH4 and H2O column amounts retrieval from GOSAT TANSO-FTS SWIR,
available at: http://data2.gosat.nies.go.jp/doc/documents/ATBD_FTSSWIRL2_V2.0_en.pdf (last access: 4 January 2018), 2017.
Zhang, Z., Zhang, Y., Joiner, J., and Migliavacca, M.: Angle matters:
Bidirectional effects impact the slope of relationship between gross primary
productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon
Observatory-2 across biomes, Glob. Change Biol., 24, 5017–5020,
https://doi.org/10.1111/gcb.14427, 2018.
Short summary
We investigate the radiance offset in the O2 A band of GOSAT spectrometer and quality of the offset-corrected solar-induced chlorophyll fluorescence (SIF). An analysis of temporal variation of the offset suggests that the radiometric sensitivity of the spectrometer changed after switching the optics path selector in January 2015. Comparisons at multiple spatial scales show good agreement between GOSAT SIF and OCO-2 SIF, which supports the consistency among the present satellite SIF data.
We investigate the radiance offset in the O2 A band of GOSAT spectrometer and quality of the...