Articles | Volume 13, issue 7
https://doi.org/10.5194/amt-13-3873-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-3873-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa
OSU-EFLUVE – Observatoire Sciences de l'Univers-Enveloppes Fluides de la Ville à l'Exobiologie, Université Paris-Est-Créteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris,
France
Laboratoire Interuniversitaire des Systèmes Atmosphériques
(LISA), UMR 7583, CNRS, Université Paris-Est-Créteil, Université
de Paris, Institut Pierre Simon Laplace, Créteil, France
currently at: NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD 20771, USA
Daniel M. Westervelt
Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA
Aliaksei Hauryliuk
Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Albert A. Presto
Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Andrew Grieshop
Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
Ashley Bittner
Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
Matthias Beekmann
OSU-EFLUVE – Observatoire Sciences de l'Univers-Enveloppes Fluides de la Ville à l'Exobiologie, Université Paris-Est-Créteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris,
France
Laboratoire Interuniversitaire des Systèmes Atmosphériques
(LISA), UMR 7583, CNRS, Université Paris-Est-Créteil, Université
de Paris, Institut Pierre Simon Laplace, Créteil, France
R. Subramanian
OSU-EFLUVE – Observatoire Sciences de l'Univers-Enveloppes Fluides de la Ville à l'Exobiologie, Université Paris-Est-Créteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris,
France
Laboratoire Interuniversitaire des Systèmes Atmosphériques
(LISA), UMR 7583, CNRS, Université Paris-Est-Créteil, Université
de Paris, Institut Pierre Simon Laplace, Créteil, France
Related authors
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Theobard Habineza, Allen L. Robinson, H. Langley DeWitt, Jimmy Gasore, Philip L. Croteau, and Albert A. Presto
Atmos. Chem. Phys., 25, 15953–15968, https://doi.org/10.5194/acp-25-15953-2025, https://doi.org/10.5194/acp-25-15953-2025, 2025
Short summary
Short summary
This study reports year-long PM1 (particulate matter) chemical composition in Eastern Africa using aerosol mass spectrometry. Results show PM is dominated by organic aerosol (73 %), black carbon (16 %), and inorganics (11 %), with BC largely from fossil fuel (59 %) and biomass burning (41 %). Findings highlight the impact of solid fuels and aging vehicles and stress the need for regional mitigation strategies to reduce air pollution-related health risks.
Samuel Bartusek, Yutian Wu, Mingfang Ting, Arlene Fiore, and Daniel M. Westervelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-4874, https://doi.org/10.5194/egusphere-2025-4874, 2025
Short summary
Short summary
Air pollution and extreme humid heat are both significant hazards, but their co-occurrence remains unstudied on a global scale. Using chemical and meteorological reanalyses, we find that in many areas, accounting for much of the global population, more humid heat tends to correspond with worse pollution than drier heat. We identify hotspots and study the mechanisms of this co-occurrence; our results imply it may be driven by more urban background chemistry and air stagnation during humid heat.
Joe Adabouk Amooli, Marianne T. Lund, Sourangsu Chowdhury, Gunnar Myhre, Ane N. Johansen, Bjørn H. Samset, and Daniel M. Westervelt
Atmos. Chem. Phys., 25, 11611–11632, https://doi.org/10.5194/acp-25-11611-2025, https://doi.org/10.5194/acp-25-11611-2025, 2025
Short summary
Short summary
We analyze various projections of African aerosol emissions and their potential impacts on climate and public health. We find that future emissions vary widely across emission projections, with differences in sectoral emission distributions. Using the Oslo chemical transport model, we show that air pollution exposure in some regions of Africa could increase significantly by 2050, increasing pollution-related deaths, with most scenarios projecting aerosol-induced warming over sub-Saharan Africa.
Catherine A. Toolan, Joe Adabouk Amooli, Laura J. Wilcox, Bjørn H. Samset, Andrew G. Turner, and Daniel M. Westervelt
Atmos. Chem. Phys., 25, 10523–10557, https://doi.org/10.5194/acp-25-10523-2025, https://doi.org/10.5194/acp-25-10523-2025, 2025
Short summary
Short summary
Our research explores how well air pollution and rainfall patterns in Africa are represented in current climate models by comparing model data to observations from 1981 to 2023. While most models capture seasonal air quality changes well, they struggle to replicate the distribution of non-dust pollutants and certain rainfall patterns, especially over east Africa. Improving these models is crucial for better climate predictions and preparing for future risks.
Gopalakrishna Pillai Gopikrishnan, Daniel M. Westervelt, and Jayanarayanan Kuttippurath
EGUsphere, https://doi.org/10.5194/egusphere-2025-1056, https://doi.org/10.5194/egusphere-2025-1056, 2025
Short summary
Short summary
This study examines the inverse effect of aerosol surface area and particulate matter (PM) reduction on air quality and atmospheric chemistry, particularly on surface ozone levels. Aerosols act as surfaces for the uptake of hydroxyl radicals (HO2), which are essential for controlling ozone formation. Reducing aerosols and PM may enhance surface ozone formation, thus worsening air quality. However, further efforts to decrease NOx emissions could mitigate this rise in surface ozone levels.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana L. Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
Atmos. Chem. Phys., 25, 4803–4831, https://doi.org/10.5194/acp-25-4803-2025, https://doi.org/10.5194/acp-25-4803-2025, 2025
Short summary
Short summary
The summer of 2022 has been considered a proxy for future climate scenarios due to its hot and dry conditions. In this paper, we use the measurements from the Atmospheric Chemistry of the Suburban Forest (ACROSS) campaign, conducted in the Paris area in June–July 2022, along with observations from existing networks, to evaluate a 3D chemistry transport model (WRF–CHIMERE) simulation. Results are shown to be satisfactory, allowing us to explain the gas and aerosol variability at the campaign sites.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 25, 3161–3189, https://doi.org/10.5194/acp-25-3161-2025, https://doi.org/10.5194/acp-25-3161-2025, 2025
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed urban emission impact on surrounding areas. CRI full period averages at 520 nm were 1.41 – 0.037i (urban), 1.52 – 0.038i (peri-urban), and 1.50 – 0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22 % of absorption at 370 nm.
Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, and Jennifer Richmond-Bryant
Atmos. Meas. Tech., 17, 6735–6749, https://doi.org/10.5194/amt-17-6735-2024, https://doi.org/10.5194/amt-17-6735-2024, 2024
Short summary
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024, https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary
Short summary
Methane is an important driver of climate change and is challenging to inexpensively sense in low atmospheric concentrations. We developed a low-cost sensor to monitor methane and tested it in indoor and outdoor settings. Our device shows promise for monitoring low levels of methane. We characterize its limitations and suggest future research directions for further development.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Sunhye Kim, Jo Machesky, Drew R. Gentner, and Albert A. Presto
Atmos. Chem. Phys., 24, 1281–1298, https://doi.org/10.5194/acp-24-1281-2024, https://doi.org/10.5194/acp-24-1281-2024, 2024
Short summary
Short summary
Cooking emissions are often an overlooked source of air pollution. We used a mobile lab to measure the characteristics of particles emitted from cooking sites in two cities. Our findings showed that cooking releases a substantial number of fine particles. While most emissions were similar, a bakery site showed distinctive chemical compositions with higher nitrogen compound levels. Thus, understanding the particle emissions from different cooking activities is crucial.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Arineh Cholakian, Matthias Beekmann, Guillaume Siour, Isabelle Coll, Manuela Cirtog, Elena Ormeño, Pierre-Marie Flaud, Emilie Perraudin, and Eric Villenave
Atmos. Chem. Phys., 23, 3679–3706, https://doi.org/10.5194/acp-23-3679-2023, https://doi.org/10.5194/acp-23-3679-2023, 2023
Short summary
Short summary
This article revolves around the simulation of biogenic secondary organic aerosols in the Landes forest (southwestern France). Several sensitivity cases involving biogenic emission factors, land cover data, anthropogenic emissions, and physical or meteorological parameters were performed and each compared to measurements both in the forest canopy and around the forest. The chemistry behind the formation of these aerosols and their production and transport in the forest canopy is discussed.
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022, https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary
Short summary
Methane is a major greenhouse gas and contributor to climate change with various human-caused and natural sources. Currently, atmospheric methane is expensive to sense. We investigate repurposing cheap methane safety sensors for atmospheric sensing, finding several promising sensors and identifying some of the challenges in this approach. This work will help in developing inexpensive sensor networks for methane monitoring, which will aid in reducing methane leaks and emissions.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Mathew Sebastian, Sobhan Kumar Kompalli, Vasudevan Anil Kumar, Sandhya Jose, S. Suresh Babu, Govindan Pandithurai, Sachchidanand Singh, Rakesh K. Hooda, Vijay K. Soni, Jeffrey R. Pierce, Ville Vakkari, Eija Asmi, Daniel M. Westervelt, Antti-Pekka Hyvärinen, and Vijay P. Kanawade
Atmos. Chem. Phys., 22, 4491–4508, https://doi.org/10.5194/acp-22-4491-2022, https://doi.org/10.5194/acp-22-4491-2022, 2022
Short summary
Short summary
Characteristics of particle number size distributions and new particle formation in six locations in India were analyzed. New particle formation occurred frequently during the pre-monsoon (spring) season and it significantly modulates the shape of the particle number size distributions. The contribution of newly formed particles to cloud condensation nuclei concentrations was ~3 times higher in urban locations than in mountain background locations.
Juan Cuesta, Lorenzo Costantino, Matthias Beekmann, Guillaume Siour, Laurent Menut, Bertrand Bessagnet, Tony C. Landi, Gaëlle Dufour, and Maxim Eremenko
Atmos. Chem. Phys., 22, 4471–4489, https://doi.org/10.5194/acp-22-4471-2022, https://doi.org/10.5194/acp-22-4471-2022, 2022
Short summary
Short summary
We present the first comprehensive study integrating satellite observations of near-surface ozone pollution, surface in situ measurements, and a chemistry-transport model for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020. It confirms the occurrence of a net enhancement of ozone in central Europe and a reduction elsewhere, except for some hotspots, linked with the reduction of precursor emissions from Europe and the Northern Hemisphere.
Andrea Pazmiño, Matthias Beekmann, Florence Goutail, Dmitry Ionov, Ariane Bazureau, Manuel Nunes-Pinharanda, Alain Hauchecorne, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 21, 18303–18317, https://doi.org/10.5194/acp-21-18303-2021, https://doi.org/10.5194/acp-21-18303-2021, 2021
Short summary
Short summary
UV-Visible Système d'Analyse par Observations Zénithales (SAOZ) NO2 tropospheric columns were evaluated to quantify the impact of the lockdown in limiting the COVID-19 propagation. Meteorological conditions and NO2 trends were considered. The negative anomaly in tropospheric columns in 2020, attributed to the lockdown (17 March–10 May and related emissions reductions), was 56 % at Paris and 46 % at a suburban site. A similar anomaly was found in the Airparif data of surface concentrations.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, Mikhail V. Panchenko, and Meinrat O. Andreae
Atmos. Meas. Tech., 14, 6647–6673, https://doi.org/10.5194/amt-14-6647-2021, https://doi.org/10.5194/amt-14-6647-2021, 2021
Short summary
Short summary
The absorption of solar light by organic matter, known as brown carbon (BrC), contributes significantly to the radiative budget of the Earth’s atmosphere, but its representation in atmospheric models is uncertain. This paper advances a methodology to constrain model parameters characterizing BrC absorption of atmospheric aerosol originating from biomass burning with the available remote ground-based observations of atmospheric aerosol.
Rebecca D. Kutzner, Juan Cuesta, Pascale Chelin, Jean-Eudes Petit, Mokhtar Ray, Xavier Landsheere, Benoît Tournadre, Jean-Charles Dupont, Amandine Rosso, Frank Hase, Johannes Orphal, and Matthias Beekmann
Atmos. Chem. Phys., 21, 12091–12111, https://doi.org/10.5194/acp-21-12091-2021, https://doi.org/10.5194/acp-21-12091-2021, 2021
Short summary
Short summary
Our work investigates the diurnal evolution of atmospheric ammonia concentrations during a major pollution event. It analyses it in regard of both chemical (gas–particle conversion) and physical (vertical mixing, meteorology) processes in the atmosphere. These mechanisms are key for understanding the evolution of the physicochemical state of the atmosphere; therefore, it clearly fits into the scope of Atmospheric Chemistry and Physics.
Daniel M. Westervelt, Arlene M. Fiore, Colleen B. Baublitz, and Gustavo Correa
Atmos. Chem. Phys., 21, 6799–6810, https://doi.org/10.5194/acp-21-6799-2021, https://doi.org/10.5194/acp-21-6799-2021, 2021
Short summary
Short summary
Particulate air pollution in the atmosphere can impact the availability of gas-phase chemical constituents, which can then have feedbacks on gas-phase air pollutants. We use a chemistry–climate computer model to simulate the impact of particulate pollution from three major world regions on gas-phase chemical constituents. We find that surface-level ozone air pollution decreases by up to 5 ppbv over China in response to Chinese particulate air pollution, which has implications for policy.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, and Meinrat O. Andreae
Atmos. Chem. Phys., 21, 357–392, https://doi.org/10.5194/acp-21-357-2021, https://doi.org/10.5194/acp-21-357-2021, 2021
Short summary
Short summary
A lack of consistent observational constraints on the atmospheric evolution of the optical properties of biomass burning (BB) aerosol limits the accuracy of assessments of the aerosol radiative and climate effects. We show that useful insights into the evolution of the BB aerosol optical properties can be inferred from a combination of satellite observations and 3D modeling. We report major changes that occurred in the optical properties of Siberian BB aerosol during its long-range transport.
Cited articles
Abel, D. W., Holloway, T., Harkey, M., Meier, P., Ahl, D., Limaye, V. S., and
Patz, J. A.: Air-quality-related health impacts from climate change and from
adaptation of cooling demand for buildings in the eastern United States: An
interdisciplinary modeling study, edited by: Thomson, M., PLOS Medicine,
15, e1002599, https://doi.org/10.1371/journal.pmed.1002599, 2018.
Allen, G.: “Is it good enough?” The Role of PM and Ozone Sensor
Testing/Certification Programs, available at:
https://www.epa.gov/sites/production/files/2020-02/documents/session_07_b_allen.pdf (last access: 15 July 2020), 2018.
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing Global
Mortality from Ambient PM2.5, Environ. Sci. Technol., 49,
8057–8066, https://doi.org/10.1021/acs.est.5b01236, 2015.
AQ-SPEC: Met One Neighborhood Monitor Evaluation Report, South Coast Air
Quality Management District, available at:
http://www.aqmd.gov/aq-spec/product/met-one---neighborhood-monitor (last access:
28 June 2018), 2015.
AQ-SPEC: Alphasense OPC-N2 Sensor Evaluation Report, South Coast Air Quality
Management District, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/alphasense-opc-n2---field-evaluation.pdf?sfvrsn=0
(last access: 5 December 2019), 2016.
AQ-SPEC: PurpleAir PA-II Sensor Evaluation Report, South Coast Air Quality
Management District, available at:
http://www.aqmd.gov/aq-spec/product/purpleair-pa-ii (last access: 28 June 2018),
2017.
Bell, M. L., Ebisu, K., and Belanger, K.: Ambient Air Pollution and Low Birth
Weight in Connecticut and Massachusetts, Environ. Health Persp.,
115, 1118–1124, https://doi.org/10.1289/ehp.9759, 2007.
Belle, J. H., Chang, H. H., Wang, Y., Hu, X., Lyapustin, A., and Liu, Y.: The
Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level
PM2.5 Mass and Composition, Int. J. Env. Res. Pub. He., 14, 1244,
https://doi.org/10.3390/ijerph14101244, 2017.
Bi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z.,
Kinney, P. L., Freedman, F. R., and Liu, Y.: Contribution of low-cost sensor
measurements to the prediction of PM2.5 levels: A case study in Imperial
County, California, USA, Environ. Res., 180, 108810,
https://doi.org/10.1016/j.envres.2019.108810, 2020.
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A.,
Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A.,
Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., Kaufman, J. D., and on
behalf of the American Heart Association Council on Epidemiology and
Prevention, Council on the Kidney in Cardiovascular Disease, and Council on
Nutrition, Physical Activity and Metabolism: Particulate Matter Air
Pollution and Cardiovascular Disease: An Update to the Scientific Statement
From the American Heart Association, Circulation, 121, 2331–2378,
https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010.
Chang, H. H., Hu, X., and Liu, Y.: Calibrating MODIS aerosol optical depth
for predicting daily PM2.5 concentrations via statistical downscaling,
J. Expo. Sci. Env. Epid., 24, 398–404, https://doi.org/10.1038/jes.2013.90, 2014.
Christopher, S. A. and Gupta, P.: Satellite Remote Sensing of Particulate
Matter Air Quality: The Cloud-Cover Problem,
J. Air Waste Manage., 60, 596–602, https://doi.org/10.3155/1047-3289.60.5.596,
2010.
Chudnovsky, A., Tang, C., Lyapustin, A., Wang, Y., Schwartz, J., and Koutrakis, P.: A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions, Atmos. Chem. Phys., 13, 10907–10917, https://doi.org/10.5194/acp-13-10907-2013, 2013a.
Chudnovsky, A. A., Kostinski, A., Lyapustin, A., and Koutrakis, P.: Spatial
scales of pollution from variable resolution satellite imaging,
Environ. Pollut., 172, 131–138, https://doi.org/10.1016/j.envpol.2012.08.016,
2013b.
Chudnovsky, A. A., Koutrakis, P., Kloog, I., Melly, S., Nordio, F.,
Lyapustin, A., Wang, Y., and Schwartz, J.: Fine particulate matter
predictions using high resolution Aerosol Optical Depth (AOD) retrievals,
Atmos. Environ., 89, 189–198, https://doi.org/10.1016/j.atmosenv.2014.02.019,
2014.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, 2017.
De Longueville, F., Hountondji, Y.-C., Henry, S., and Ozer, P.: What do we
know about effects of desert dust on air quality and human health in West
Africa compared to other regions?, Sci. Total Environ., 409,
1–8, https://doi.org/10.1016/j.scitotenv.2010.09.025, 2010.
Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C.,
Dominici, F., and Schwartz, J. D.: Air Pollution and Mortality in the
Medicare Population, New Engl. J. Med., 376, 2513–2522,
https://doi.org/10.1056/NEJMoa1702747, 2017.
Di Antonio, A., Popoola, O., Ouyang, B., Saffell, J., and Jones, R.:
Developing a Relative Humidity Correction for Low-Cost Sensors Measuring
Ambient Particulate Matter, Sensors, 18, 2790, https://doi.org/10.3390/s18092790,
2018.
Engel-Cox, J. A., Holloman, C. H., Coutant, B. W., and Hoff, R. M.:
Qualitative and quantitative evaluation of MODIS satellite sensor data for
regional and urban scale air quality, Atmos. Environ., 38,
2495–2509, https://doi.org/10.1016/j.atmosenv.2004.01.039, 2004.
Ford, B., Pierce, J. R., Wendt, E., Long, M., Jathar, S., Mehaffy, J., Tryner, J., Quinn, C., van Zyl, L., L'Orange, C., Miller-Lionberg, D., and Volckens, J.: A low-cost monitor for measurement of fine particulate matter and aerosol optical depth – Part 2: Citizen-science pilot campaign in northern Colorado, Atmos. Meas. Tech., 12, 6385–6399, https://doi.org/10.5194/amt-12-6385-2019, 2019.
Goldberger, A. S.: Classical Linear Regression, in: Econometric theory,
Wiley, New York, 1980.
Hacker, K.: Air Monitoring Network Plan for 2018, Allegheny County Health
Department Air Quality Program, Pittsburgh, PA, available at:
http://www.achd.net/air/publiccomment2017/ANP2018_final.pdf (last access: 16 January 2018),
2017.
Han, W., Tong, L., Chen, Y., Li, R., Yan, B., and Liu, X.: Estimation of
High-Resolution Daily Ground-Level PM2.5 Concentration in Beijing 2013–2017
Using 1 km MAIAC AOT Data, Appl. Sci., 8, 2624,
https://doi.org/10.3390/app8122624, 2018.
Heft-Neal, S., Burney, J., Bendavid, E., and Burke, M.: Robust relationship
between air quality and infant mortality in Africa, Nature, 559,
254–258, https://doi.org/10.1038/s41586-018-0263-3, 2018.
Hersey, S. P., Garland, R. M., Crosbie, E., Shingler, T., Sorooshian, A., Piketh, S., and Burger, R.: An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data, Atmos. Chem. Phys., 15, 4259–4278, https://doi.org/10.5194/acp-15-4259-2015, 2015.
Judd, L. M., Al-Saadi, J. A., Valin, L. C., Pierce, R. B., Yang, K., Janz,
S. J., Kowalewski, M. G., Szykman, J. J., Tiefengraber, M., and Mueller, M.:
The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul
and Los Angeles, Front. Environ. Sci., 6, 85, https://doi.org/10.3389/fenvs.2018.00085,
2018.
Kaufman, Y. J. and Fraser, R. S.: Light Extinction by Aerosols during Summer
Air Pollution, J. Clim. Appl. Meteorol., 22,
1694–1706, https://doi.org/10.1175/1520-0450(1983)022<1694:LEBADS>2.0.CO;2, 1983.
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D.,
Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a
low-cost particulate matter sensor, Environ. Pollut., 221, 491–500,
https://doi.org/10.1016/j.envpol.2016.12.039, 2017.
Kloog, I., Chudnovsky, A. A., Just, A. C., Nordio, F., Koutrakis, P., Coull,
B. A., Lyapustin, A., Wang, Y., and Schwartz, J.: A new hybrid
spatio-temporal model for estimating daily multi-year PM2.5 concentrations
across northeastern USA using high resolution aerosol optical depth data,
Atmos. Environ., 95, 581–590, https://doi.org/10.1016/j.atmosenv.2014.07.014,
2014.
Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., and Koutrakis, P.: A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations, Atmos. Chem. Phys., 11, 7991–8002, https://doi.org/10.5194/acp-11-7991-2011, 2011.
Li, H. Z., Gu, P., Ye, Q., Zimmerman, N., Robinson, E. S., Subramanian, R.,
Apte, J. S., Robinson, A. L., and Presto, A. A.: Spatially dense air
pollutant sampling: Implications of spatial variability on the
representativeness of stationary air pollutant monitors, Atmos. Environ., 2, 100012, https://doi.org/10.1016/j.aeaoa.2019.100012, 2019.
Liousse, C., Assamoi, E., Criqui, P., Granier, C., and Rosset, R.: Explosive
growth in African combustion emissions from 2005 to 2030,
Environ. Res. Lett., 9, 035003, https://doi.org/10.1088/1748-9326/9/3/035003, 2014.
Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., and Koutrakis, P.:
Estimating Ground-Level PM2.5 in the Eastern United States Using Satellite
Remote Sensing, Environ. Sci. Technol., 39, 3269–3278,
https://doi.org/10.1021/es049352m, 2005.
Lyapustin, A. and Wang, Y.: MCD19A2 MODIS/Terra+Aqua Land Aerosol Optical
Depth Daily L2G Global 1km SIN Grid V006 [Data set], NASA EOSDIS Land
Processes DAAC,
https://doi.org/10.5067/MODIS/MCD19A2.006, 2018.
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., and Korkin, S.:
Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative
transfer basis and look-up tables, J. Geophys. Res., 116, D03210,
https://doi.org/10.1029/2010JD014985, 2011a.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res., 116, D03211,
https://doi.org/10.1029/2010JD014986, 2011b.
Lyapustin, A., Wang, Y., Laszlo, I., Hilker, T., G.Hall, F., Sellers, P. J.,
Tucker, C. J., and Korkin, S. V.: Multi-angle implementation of atmospheric
correction for MODIS (MAIAC): 3. Atmospheric correction, Remote Sens.
Environ., 127, 385–393, https://doi.org/10.1016/j.rse.2012.09.002, 2012.
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.
Ma, Z., Hu, X., Huang, L., Bi, J., and Liu, Y.: Estimating Ground-Level PM2.5
in China Using Satellite Remote Sensing, Environ. Sci. Technol., 48,
7436–7444, https://doi.org/10.1021/es5009399, 2014.
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., and R. Subramanian: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring, Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019, 2019a.
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L.,
Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with
low-cost sensors: Corrections and long-term performance evaluation,
Aerosol Sci. Technol.,54, 160–174, https://doi.org/10.1080/02786826.2019.1623863, 2019b.
Malings, C., Westervelt, D., Hauryliuk, A., Presto, A. A., Grieshop, A., Bittner, A., Beekmann, M., and Subramanian, R.: Codes and Dataset for “Application of Low-Cost Fine Particulate Mass Monitors to Convert Satellite Aerosol Optical Depth to Surface Concentrations in North America and Africa”, Zenodo, https://doi.org/10.5281/zenodo.3897454, 2020.
Martin, R. V., Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., and
Dey, S.: No one knows which city has the highest concentration of fine
particulate matter, Atmos. Environ., 3, 100040,
https://doi.org/10.1016/j.aeaoa.2019.100040, 2019.
Matshidiso Moeti: Cleaning up Africa's air would pay for itself in economic
gains: Pollution is dragging down the continent's GDP and harming its
children, Financial Times, 2018.
McDonnell, P.: Commonwealth of Pennsylvania Department of Environmental
Protection 2016 Annual Ambient Air Monitoring Network Plan,
available at:
https://www.epa.gov/sites/production/files/2017-12/documents/paplan2016.pdf
(last access: 27 February 2019), 2017.
Mead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M.,
Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, T. F., Dicks, J., Lewis,
A., Cohen, J., Baron, R., Saffell, J. R., and Jones, R. L.: The use of
electrochemical sensors for monitoring urban air quality in low-cost,
high-density networks, Atmos. Environ., 70, 186–203,
https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013.
Murray, N. L., Holmes, H. A., Liu, Y., and Chang, H. H.: A Bayesian ensemble
approach to combine PM2.5 estimates from statistical models using satellite
imagery and numerical model simulation, Environ. Res., 178, 108601,
https://doi.org/10.1016/j.envres.2019.108601, 2019.
Ogunjobi, K. O. and Awoleye, P. O.: Intercomparison and Validation of
Satellite and Ground-Based Aerosol Optical Depth (AOD) Retrievals over Six
AERONET Sites in West Africa, Aerosol Sci. Eng., 3, 32–47,
https://doi.org/10.1007/s41810-019-00040-7, 2019.
Paciorek, C. J. and Liu, Y.: Limitations of Remotely Sensed Aerosol as a
Spatial Proxy for Fine Particulate Matter, Environ. Health Persp., 117, 904–909, https://doi.org/10.1289/ehp.0800360, 2009.
Paciorek, C. J., Liu, Y., Moreno-Macias, H., and Kondragunta, S.:
Spatiotemporal Associations between GOES Aerosol Optical Depth Retrievals
and Ground-Level PM2.5, Environ. Sci. Technol., 42, 5800–5806,
https://doi.org/10.1021/es703181j, 2008.
Paciorek, C. J., Liu, Y., and HEI Health Review Committee: Assessment and
statistical modeling of the relationship between remotely sensed aerosol
optical depth and PM2.5 in the eastern United States, Res Rep Health Eff
Inst, 167, 5–83, discussion 85–91, PMID: 22838153, available at:
https://europepmc.org/article/med/22838153 (last access: 15 July 2020), 2012.
Petkova, E. P., Jack, D. W., Volavka-Close, N. H., and Kinney, P. L.:
Particulate matter pollution in African cities,
Air Qual. Atmos. Hlth., 6, 603–614, https://doi.org/10.1007/s11869-013-0199-6, 2013.
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K.,
and Thurston, G. D.: Lung cancer, cardiopulmonary mortality, and long-term
exposure to fine particulate air pollution, JAMA, 287, 1132–1141, 2002.
R Subramanian, Safari Kagabo, A., Baharane, V., Guhirwa, S.,
Sindayigaya, C., Malings, C., Williams, N. J., Kalisa, E.,
Li, H., Adams, P., Robinson, A. L., Langley DeWitt, H., Gasore, J., and
Jaramillo, P.: Air pollution in Kigali, Rwanda using lower-cost RAMP
monitors: Spatial and temporal variability, contribution of regional and
local sources, and evaluation of car-free Sundays, Clean Air Journal, under
review, 2020.
Ren, Z., Zhu, J., Gao, Y., Yin, Q., Hu, M., Dai, L., Deng, C., Yi, L., Deng,
K., Wang, Y., Li, X., and Wang, J.: Maternal exposure to ambient PM10 during
pregnancy increases the risk of congenital heart defects: Evidence from
machine learning models, Sci. Total Environ., 630, 1–10,
https://doi.org/10.1016/j.scitotenv.2018.02.181, 2018.
Schwartz, J., Dockery, D. W., and Neas, L. M.: Is daily mortality associated
specifically with fine particles?, J. Air Waste. Manage., 46,
927–939, 1996.
She, Q., Choi, M., Belle, J. H., Xiao, Q., Bi, J., Huang, K., Meng, X.,
Geng, G., Kim, J., He, K., Liu, M., and Liu, Y.: Satellite-based estimation
of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze
River Delta, China, Chemosphere, 239, 124678,
https://doi.org/10.1016/j.chemosphere.2019.124678, 2020.
Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W. J.,
Faluvegi, G., Folberth, G. A., Horowitz, L. W., Nagashima, T., Naik, V.,
Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P.,
Doherty, R. M., Josse, B., MacKenzie, I. A., Stevenson, D. S., and Zeng, G.:
Future global mortality from changes in air pollution attributable to
climate change, Nat. Clim. Change, 7, 647–651,
https://doi.org/10.1038/nclimate3354, 2017.
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R.
W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss,
P. W.: The Changing Paradigm of Air Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377, https://doi.org/10.1021/es4022602, 2013.
Subramanian, R., Ellis, A., Torres-Delgado, E., Tanzer, R., Malings, C.,
Rivera, F., Morales, M., Baumgardner, D., Presto, A., and Mayol-Bracero, O.
L.: Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case
Study on the Use of Lower Cost Air Quality Monitors,
ACS Earth and Space Chemistry, 2, 1179–1186, https://doi.org/10.1021/acsearthspacechem.8b00079, 2018.
Superczynski, S. D., Kondragunta, S., and Lyapustin, A. I.: Evaluation of the
multi-angle implementation of atmospheric correction (MAIAC) aerosol
algorithm through intercomparison with VIIRS aerosol products and AERONET:
MAIAC AOT Evaluation, J. Geophys. Res.-Atmos., 122, 3005–3022,
https://doi.org/10.1002/2016JD025720, 2017.
Tanzer, R., Malings, C., Hauryliuk, A., Subramanian, R., and Presto, A. A.:
Demonstration of a Low-Cost Multi-Pollutant Network to Quantify Intra-Urban
Spatial Variations in Air Pollutant Source Impacts and to Evaluate
Environmental Justice, Int. J. Env. Res. Pub. He., 16, 2523, https://doi.org/10.3390/ijerph16142523,
2019.
UNEP: Global Assessment of Sand and Dust Storms, United Nations Environment
Programme?; World Meteorological Organization (WMO), United Nations
Convention to Combat Desertification, available at:
https://library.wmo.int/doc_num.php?explnum_id=3083 (last access: 15 July 2020), 2016.
US EPA: Quality Assurance Guidance Document 2.12: Monitoring PM2.5 in
Ambient Air Using Designated Reference or Class I Equivalent Methods, United
States Environmental Protection Agency, available at:
https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/m212.pdf (last access: 15 July 2020), 2016.
van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco,
C., and Villeneuve, P. J.: Global Estimates of Ambient Fine Particulate
Matter Concentrations from Satellite-Based Aerosol Optical Depth:
Development and Application, Environ Health Perspect, 118, 847–855,
https://doi.org/10.1289/ehp.0901623, 2010.
van Donkelaar, A., Martin, R. V., Brauer, M., and Boys, B. L.: Use of
Satellite Observations for Long-Term Exposure Assessment of Global
Concentrations of Fine Particulate Matter, Environ. Health Persp., 123, 135–143, https://doi.org/10.1289/ehp.1408646, 2015.
Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived
aerosol optical thickness and PM2.5 mass: Implications for air quality
studies, Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Watson, J. G., Chow, J. C., Moosmüller, H., Green, M., Frank, N., and
Pitchford, M.: Guidance for using continuous monitors in PM2.5 monitoring
networks, US EPA Office of Air Quality Planning and Standards, Triangle
Park, NC., 1998.
WHO: WHO Air quality guidelines for particulate matter, ozone,
nitrogendioxide and sulfur dioxide: Summary of risk assessment, World Health
Organization, available at:
https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1 (last access: 15 July 2020), 2006.
WHO: Ambient air pollution: a global assessment of burden and disease.,
World Health Organization, available at:
http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf (last access: 15 July 2020),
2016.
WHO: Global Health Observatory (GHO) data: Exposure to ambient air
pollution, World Health Organization, available at:
http://www.who.int/gho/phe/outdoor_air_pollution/exposure/en/ (last access: 15 July 2020), 2017.
WHO: Ambient (outdoor) air quality and health, World Health Organization, available at:
https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (last access: 15 July 2020),
2018a.
WHO: WHO ambient (outdoor) air quality database Summary results, update
2018, Public Health, Social and Environmental Determinants of Health
Department, World Health Organization, available at:
https://www.who.int/airpollution/data/AAP_database_summary_results_2018_final2.pdf?ua=1 (last access: 15 July 2020), 2018b.
Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict,
K., Rice, J., Kaufman, A., Judge, R., Pierce, G., Allen, G., Bergin, M.,
Cohen, R. C., Fransioli, P., Gerboles, M., Habre, R., Hannigan, M., Jack,
D., Louie, P., Martin, N. A., Penza, M., Polidori, A., Subramanian, R., Ray,
K., Schauer, J., Seto, E., Thurston, G., Turner, J., Wexler, A. S., and Ning,
Z.: Deliberating performance targets workshop: Potential paths for emerging
PM2.5 and O3 air sensor progress, Atmos. Environ., 2, 100031,
https://doi.org/10.1016/j.aeaoa.2019.100031, 2019.
World Bank: The Cost of Air Pollution: Strengthening the Economic Case for
Action, The World Bank and Institute for Health Metrics and Evaluation,
University of Washington, Seattle, available at:
http://documents.worldbank.org/curated/en/781521473177013155/pdf/108141-REVISED-Cost-of-PollutionWebCORRECTEDfile.pdf (last access: 15 July 2020),
2016.
Zeng, Q., Chen, L., Zhu, H., Wang, Z., Wang, X., Zhang, L., Gu, T., Zhu, G.,
and Zhang, Y.: Satellite-Based Estimation of Hourly PM2.5 Concentrations
Using a Vertical-Humidity Correction Method from Himawari-AOD in Hebei,
Sensors, 18, 3456, https://doi.org/10.3390/s18103456, 2018.
Zhang, H., Hoff, R. M., and Engel-Cox, J. A.: The Relation between Moderate
Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth and PM2.5
over the United States: A Geographical Comparison by U.S. Environmental
Protection Agency Regions, J. Air Waste Manage., 59, 1358–1369, https://doi.org/10.3155/1047-3289.59.11.1358, 2009.
Zhang, H., Lyapustin, A., Wang, Y., Kondragunta, S., Laszlo, I., Ciren, P., and Hoff, R. M.: A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States, Atmos. Chem. Phys., 11, 11977–11991, https://doi.org/10.5194/acp-11-11977-2011, 2011.
Zhang, H., Hoff, R. M., Kondragunta, S., Laszlo, I., and Lyapustin, A.: Aerosol optical depth (AOD) retrieval using simultaneous GOES-East and GOES-West reflected radiances over the western United States, Atmos. Meas. Tech., 6, 471–486, https://doi.org/10.5194/amt-6-471-2013, 2013.
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.
Zikova, N., Hopke, P. K., and Ferro, A. R.: Evaluation of new low-cost
particle monitors for PM2.5 concentrations measurements, J. Aerosol
Sci., 105, 24–34, https://doi.org/10.1016/j.jaerosci.2016.11.010, 2017.
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, 2018.
Short summary
Most air quality information comes from accurate but expensive instruments. These can be supplemented by lower-cost sensors to increase the density of ground data and expand monitoring into less well-instrumented areas, like sub-Saharan Africa. In this paper, we look at how low-cost sensor data can be combined with satellite information on air quality (which requires ground data to properly calibrate measurements) and assess the benefits these low-cost sensors provide in this context.
Most air quality information comes from accurate but expensive instruments. These can be...