Brousmiche, S., Bricteux, L., Sobieski, P., Macq, B., and Winckelmans, G.:
Numerical simulation of a heterodyne Doppler LIDAR for wind measurement in a turbulent atmospheric boundary layer,
in: 2007 IEEE International Geoscience and Remote Sensing Symposium, 23–27 July 2007, Barcelona, Spain,
https://doi.org/10.1109/IGARSS.2007.4423420, 2007.
a
Burger, W. and Burge, M. J.:
Digital Image Processing – An Algorithmic Introduction using Java, Texts in Computer Science,
Springer, London, UK, 2008. a
Cariou, J.:
Remote Sensing for Wind Energy, chap. Pulsed lidars,
DTU Wind Energy, Denmark, 131–148, 2015.
a,
b
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.:
A Density-based Algorithm for Discovering Clusters a Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,
in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, 2–4 August 1996, Portland, Oregon, 226–231, 1996. a
Gryning, S., Floors, R., Peña, A., Batchvarova, E., and Brümmer, B.:
Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites,
Bound-Lay. Meteorol.,
159, 329,
https://doi.org/10.1007/s10546-015-0113-x, 2016.
a
Huang, T., Yang, G., and Tang, G.:
A fast two-dimensional median filtering algorithm,
IEEE T. Acoust. Speech,
27, 13–18,
https://doi.org/10.1109/TASSP.1979.1163188, 1979.
a,
b
Karagali, I., Mann, J., Dellwik, E., and Vasiljević, N.:
New European Wind Atlas: The Østerild balconies experiment,
J. Phys. Conf. Ser.,
1037, 052029,
https://doi.org/10.1088/1742-6596/1037/5/052029, 2018.
a,
b,
c,
d,
e
Kolmogorov, A.:
Sulla determinazione empirica di una lgge di distribuzione,
Inst. Ital. Attuari, Giorn.,
4, 83–91,
https://ci.nii.ac.jp/naid/10010480527/en/ (last access: 4 September 2020), 1933. a
MacQueen, J.:
Some methods for classification and analysis of multivariate observations,
in: Proceedings Fifth Berkeley Symp. on Math. Statist. and Prob., vol. 1: Statistics, 21 June–18 July 1965 and 27 December 1965–7 January 1966, Berkeley, California, USA, 281–297, 1967. a
Mandelbrot, B.:
The fractal geometry of nature,
W. H. Freeman and Comp., New York, USA, 1983. a
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C., Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn, P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A., Sanz, R. J., Söderberg, S., Vasiljevic, N., and Veiga, R. C.:
Complex terrain experiments in the new european wind atlas,
Philos. T. R. Soc. A,
375, 20160101,
https://doi.org/10.1098/rsta.2016.0101, 2017.
a
Menke, R., Vasiljević, N., Wagner, J., Oncley, S. P., and Mann, J.: Multi-lidar wind resource mapping in complex terrain, Wind Energ. Sci., 5, 1059–1073,
https://doi.org/10.5194/wes-5-1059-2020, 2020.
a
Perlin, K.: Noise hardware, in: Real-Time Shading SIGGRAPH, Course Notes, Baltimore, Maryland, USA, 2001.
a,
b
Smalikho, I. N. and Banakh, V. A.:
Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing,
Atmos. Ocean. Opt.,
26, 404–410,
https://doi.org/10.1134/S102485601305014X, 2013.
a
Stawiarski, C., Träumner, K., Knigge, C., and Calhoun, R.:
Scopes and Challenges of Dual-Doppler Lidar Wind Measurements – An Error Analysis,
J. Atmos. Ocean. Tech.,
30, 2044–2062,
https://doi.org/10.1175/JTECH-D-12-00244.1, 2013.
a
Vasiljević, N., Lea, G., Courtney, M., Cariou, J., Mann, J., and Mikkelsen, T.: Long-Range WindScanner System, Remote Sens.,
8, 896,
https://doi.org/10.3390/rs8110896, 2016.
a,
b,
c,
d
Vasiljević, N., L. M. Palma, J. M., Angelou, N., Carlos Matos, J., Menke, R., Lea, G., Mann, J., Courtney, M., Frölen Ribeiro, L., and M. G. C. Gomes, V. M.: Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments, Atmos. Meas. Tech., 10, 3463–3483,
https://doi.org/10.5194/amt-10-3463-2017, 2017.
a