Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6237-2020
https://doi.org/10.5194/amt-13-6237-2020
Research article
 | 
20 Nov 2020
Research article |  | 20 Nov 2020

Filtering of pulsed lidar data using spatial information and a clustering algorithm

Leonardo Alcayaga

Related authors

A multi-fidelity model benchmark for wake steering of a large turbine in a neutral ABL
Julia Steiner, Emily Louise Hodgson, Maarten Paul van der Laan, Leonardo Alcayaga, Mads Pedersen, Søren Juhl Andersen, Gunner Larsen, and Pierre-Elouan Réthoré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-200,https://doi.org/10.5194/wes-2025-200, 2025
Preprint under review for WES
Short summary
FarmConners market showcase results: wind farm flow control considering electricity prices
Konstanze Kölle, Tuhfe Göçmen, Irene Eguinoa, Leonardo Andrés Alcayaga Román, Maria Aparicio-Sanchez, Ju Feng, Johan Meyers, Vasilis Pettas, and Ishaan Sood
Wind Energ. Sci., 7, 2181–2200, https://doi.org/10.5194/wes-7-2181-2022,https://doi.org/10.5194/wes-7-2181-2022, 2022
Short summary

Cited articles

Alcayaga, L.: Lidar data filtering algorithms, Zenodo, https://doi.org/10.5281/zenodo.4014151, 2020. a
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS: Ordering Points To Identify the Clustering Structure, in: Proc. ACM SIGMOD'99 Int. Conf. on Management of Data, 1–3 June 1999, Philadelphia, Pennsylvania, USA, pp. 49–60, ACM Press, 1999. a
Backer, E.: Computer-assisted Reasoning in Cluster Analysis, Prentice Hall International (UK) Ltd., Hertfordshire, UK, 1995. a
Banakh, V. A. and Smalikho, I. N.: Estimation of the Turbulence Energy Dissipation Rate from the Pulsed Doppler Lidar Data, Atmos. Ocean. Opt., 10, 957–965, 1997. a
Beck, H. and Kühn, M.: Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurement, Remote Sens., 9, 561, https://doi.org/10.3390/rs9060561, 2017. a, b
Download
Short summary
Wind lidars present advantages over meteorological masts, including simultaneous multipoint observations, flexibility in measuring geometry, and reduced installation cost. But wind lidars come with the cost of increased complexity in terms of data quality and analysis. The common carrier-to-noise ratio and median filters are compared to the DBSCAN clustering algorithm to find improved data quality and recovery rate.
Share