Articles | Volume 13, issue 12
Atmos. Meas. Tech., 13, 6645–6656, 2020
https://doi.org/10.5194/amt-13-6645-2020
Atmos. Meas. Tech., 13, 6645–6656, 2020
https://doi.org/10.5194/amt-13-6645-2020

Research article 09 Dec 2020

Research article | 09 Dec 2020

Detecting the melting layer with a micro rain radar using a neural network approach

Maren Brast and Piet Markmann

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021,https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021,https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899, https://doi.org/10.5194/amt-13-6889-2020,https://doi.org/10.5194/amt-13-6889-2020, 2020
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020,https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary

Cited articles

Austin, P. M. and Bemis, A. C.: A quantitative study of the “bright band” in radar precipitation echoes, J. Meteorol., 7, 145–151, https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2, 1950. a
Battan, L. J.: Radar meteorology, University of Chicago Press, Chicago, Illinois, USA, 161 pp., 1959. a
Byers, H. R. and Coons, R. D.: The “bright line” in radar cloud echoes and its probable explanation, J. Meteorol., 4, 75–81, https://doi.org/10.1175/1520-0469(1947)004<0078:TLIRCE>2.0.CO;2, 1947. a
Cha, J.-W., Chang, K.-H., Yum, S. S., and Choi, Y.-J.: Comparison of the bright band characteristics measured by Micro Rain Radar (MRR) at a mountain and a coastal site in South Korea, Adv. Atmos. Sci., 26, 211–221, https://doi.org/10.1007/s00376-009-0211-0, 2009. a, b, c
Fabry, F. and Zawadzki, I.: Long-term radar observations of the melting layer of precipitation and their interpretation, J. Atmos. Sci., 52, 838–851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2, 1995. a, b, c
Download
Short summary
An artificial neural network was trained to identify melting layers in micro rain radar data. It was successfully tested on simple and complex cases, which are difficult to identify using classical approaches, and also provided information on the melting layer width.