Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-1941-2021
https://doi.org/10.5194/amt-14-1941-2021
Research article
 | 
09 Mar 2021
Research article |  | 09 Mar 2021

Using machine learning to model uncertainty for water vapor atmospheric motion vectors

Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu

Related authors

Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024,https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Simulated multispectral temperature and atmospheric composition retrievals for the JPL GEO-IR Sounder
Vijay Natraj, Ming Luo, Jean-Francois Blavier, Vivienne H. Payne, Derek J. Posselt, Stanley P. Sander, Zhao-Cheng Zeng, Jessica L. Neu, Denis Tremblay, Longtao Wu, Jacola A. Roman, Yen-Hung Wu, and Leonard I. Dorsky
Atmos. Meas. Tech., 15, 1251–1267, https://doi.org/10.5194/amt-15-1251-2022,https://doi.org/10.5194/amt-15-1251-2022, 2022
Short summary
On the role of aerosol radiative effect in the wet season onset timing over the Congo rainforest during boreal autumn
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021,https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC4RS case study
Jeffrey S. Reid, Derek J. Posselt, Kathleen Kaku, Robert A. Holz, Gao Chen, Edwin W. Eloranta, Ralph E. Kuehn, Sarah Woods, Jianglong Zhang, Bruce Anderson, T. Paul Bui, Glenn S. Diskin, Patrick Minnis, Michael J. Newchurch, Simone Tanelli, Charles R. Trepte, K. Lee Thornhill, and Luke D. Ziemba
Atmos. Chem. Phys., 19, 11413–11442, https://doi.org/10.5194/acp-19-11413-2019,https://doi.org/10.5194/acp-19-11413-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer
Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-868,https://doi.org/10.5194/egusphere-2024-868, 2024
Short summary
Application of Doppler sodar in short-term forecasting of PM10 concentration in the air in Krakow (Poland)
Ewa Agnieszka Krajny, Leszek Ośródka, and Marek Jan Wojtylak
Atmos. Meas. Tech., 17, 2451–2464, https://doi.org/10.5194/amt-17-2451-2024,https://doi.org/10.5194/amt-17-2451-2024, 2024
Short summary

Cited articles

Bormann, N., Hernandez-Carrascal, A., Borde, R., Lutz, H. J., Otkin, J. A., and Wanzong, S.: Atmospheric motion vectors from model simulations. Part I: Methods and characterization as single-level estimates of wind, J. Appl. Meteorol. Clim., 53, 47–64, https://doi.org/10.1175/JAMC-D-12-0336.1, 2014. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Cassola, F. and Burlando, M.: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output, Appl. Energ., 99, 154–166, 2012. 
Coulston, J. W., Blinn, C. E., Thomas, V. A., and Wynne, R. H.: Approximating prediction uncertainty for random forest regression models, Photogramm. Eng. Rem. S., 82, 189–197, 2016. 
Fraley, C. and Raftery, A. E.: MCLUST: Software for model-based clustering, density estimation and discriminant analysis (No. TR-415), Washington University, Seattle Department of Statistics, Seattle, Washington, USA, 2002. 
Download
Short summary
Wind-tracking algorithms produce atmospheric motion vectors (AMVs) by tracking satellite observations. Accurately characterizing the uncertainties in AMVs is essential in assimilating them into data assimilation models. We develop a machine-learning-based approach for error characterization which involves Gaussian mixture model clustering and random forest using a simulation dataset of water vapor, AMVs, and true winds. We show that our method improves on existing AMV error characterizations.