Articles | Volume 14, issue 8
Atmos. Meas. Tech., 14, 5637–5655, 2021
Atmos. Meas. Tech., 14, 5637–5655, 2021
Research article
18 Aug 2021
Research article | 18 Aug 2021

Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability

Peer Nowack et al.

Related authors

A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019
Xiang Weng, Grant L. Forster, and Peer Nowack
Atmos. Chem. Phys., 22, 8385–8402,,, 2022
Short summary
An unsupervised learning approach to identifying blocking events: the case of European summer
Carl Thomas, Apostolos Voulgarakis, Gerald Lim, Joanna Haigh, and Peer Nowack
Weather Clim. Dynam., 2, 581–608,,, 2021
Short summary
The importance of antecedent vegetation and drought conditions as global drivers of burnt area
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879,,, 2021
Short summary
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061,,, 2021
Short summary
Tropical Pacific climate variability under solar geoengineering: impacts on ENSO extremes
Abdul Malik, Peer J. Nowack, Joanna D. Haigh, Long Cao, Luqman Atique, and Yves Plancherel
Atmos. Chem. Phys., 20, 15461–15485,,, 2020
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Evaluation of two common source estimation measurement strategies using large-eddy simulation of plume dispersion under neutral atmospheric conditions
Anja Ražnjević, Chiel van Heerwaarden, and Maarten Krol
Atmos. Meas. Tech., 15, 3611–3628,,, 2022
Short summary
Machine learning techniques to improve the field performance of low-cost air quality sensors
Tony Bush, Nick Papaioannou, Felix Leach, Francis D. Pope, Ajit Singh, G. Neil Thomas, Brian Stacey, and Suzanne Bartington
Atmos. Meas. Tech., 15, 3261–3278,,, 2022
Short summary
Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer
Lisa J. Beck, Siegfried Schobesberger, Mikko Sipilä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Meas. Tech., 15, 1957–1965,,, 2022
Short summary
Importance of the Webb, Pearman, and Leuning (WPL) correction for the measurement of small CO2 fluxes
Katharina Jentzsch, Julia Boike, and Thomas Foken
Atmos. Meas. Tech., 14, 7291–7296,,, 2021
Short summary
Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241,,, 2021
Short summary

Cited articles

Bishop, C. M.: Pattern recognition and machine learning, Springer Science+Business Media, Singapore, 2006. a, b
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,, 2001. a, b
Breiman, L. and Friedman, J. H.: Predicting multivariate responses in multiple linear regression, J. Roy. Stat. Soc.-B, 59, 3–54,, 1997. a
Casey, J. G. and Hannigan, M. P.: Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: across a county line and across Colorado, Atmos. Meas. Tech., 11, 6351–6378,, 2018. a, b
Casey, J. G., Collier-Oxandale, A., and Hannigan, M.: Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors, Sensor. Actuat. B-Chem., 283, 504–514,, 2019. a
Short summary
Machine learning (ML) calibration techniques could be an effective way to improve the performance of low-cost air pollution sensors. Here we provide novel insights from case studies within the urban area of London, UK, where we compared the performance of three ML techniques to calibrate low-cost measurements of NO2 and PM10. In particular, we highlight the key issue of the method-dependent robustness in maintaining calibration skill after transferring sensors to different measurement sites.