Articles | Volume 15, issue 14
Atmos. Meas. Tech., 15, 4323–4337, 2022
https://doi.org/10.5194/amt-15-4323-2022
Atmos. Meas. Tech., 15, 4323–4337, 2022
https://doi.org/10.5194/amt-15-4323-2022
Research article
29 Jul 2022
Research article | 29 Jul 2022

Performance evaluation for retrieving aerosol optical depth from the Directional Polarimetric Camera (DPC) based on the GRASP algorithm

Shikuan Jin et al.

Related authors

Assessment of the wind energy resource on the coast of China based on machine learning algorithms
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-634,https://doi.org/10.5194/acp-2022-634, 2022
Preprint under review for ACP
Short summary
Estimation of the vertical distribution of particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms
Yingying Ma, Yang Zhu, Boming Liu, Hui Li, Shikuan Jin, Yiqun Zhang, Ruonan Fan, and Wei Gong
Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021,https://doi.org/10.5194/acp-21-17003-2021, 2021
Short summary
Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021,https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
TEMPORAL-SPATIAL CHANGES IN AEROSOLS DURING WINTER HAZE OF WUHAN: A TYPICAL HIGH-HUMID INLAND CITY IN CENTRAL CHINA
S. Jin, Y. Ma, W. Gong, and M. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 807–812, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-807-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-807-2020, 2020
The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China)
Lixia Chen, Zizheng Guo, Kunlong Yin, Dhruba Pikha Shrestha, and Shikuan Jin
Nat. Hazards Earth Syst. Sci., 19, 2207–2228, https://doi.org/10.5194/nhess-19-2207-2019,https://doi.org/10.5194/nhess-19-2207-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry
Bastiaan van Diedenhoven, Otto P. Hasekamp, Brian Cairns, Gregory L. Schuster, Snorre Stamnes, Michael Shook, and Luke Ziemba
Atmos. Meas. Tech., 15, 7411–7434, https://doi.org/10.5194/amt-15-7411-2022,https://doi.org/10.5194/amt-15-7411-2022, 2022
Short summary
Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation
Milagros E. Herrera, Oleg Dubovik, Benjamin Torres, Tatyana Lapyonok, David Fuertes, Anton Lopatin, Pavel Litvinov, Cheng Chen, Jose Antonio Benavent-Oltra, Juan L. Bali, and Pablo R. Ristori
Atmos. Meas. Tech., 15, 6075–6126, https://doi.org/10.5194/amt-15-6075-2022,https://doi.org/10.5194/amt-15-6075-2022, 2022
Short summary
Sensitivity of aerosol optical depth trends using long-term measurements of different sun photometers
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022,https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3
Larisa Sogacheva, Matthieu Denisselle, Pekka Kolmonen, Timo H. Virtanen, Peter North, Claire Henocq, Silvia Scifoni, and Steffen Dransfeld
Atmos. Meas. Tech., 15, 5289–5322, https://doi.org/10.5194/amt-15-5289-2022,https://doi.org/10.5194/amt-15-5289-2022, 2022
Short summary
Assessment of tropospheric CALIPSO Version 4.2 aerosol types over the ocean using independent CALIPSO–SODA lidar ratios
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022,https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary

Cited articles

Albrecht, B. A.: AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Ångstrom, A.: The Parameter of Atmospheric Turbidity, Tellus, 16, 64–75, https://doi.org/10.3402/tellusa.v16i1.8885, 1964. 
Breon, F. M. and Colzy, S.: Cloud detection from the spaceborne POLDER instrument and validation against surface synoptic observations, J. Appl. Meteorol., 38, 777–785, https://doi.org/10.1175/1520-0450(1999)038<0777:cdftsp>2.0.co;2, 1999. 
Breon, F. M. and Goloub, P.: Cloud droplet effective radius from spaceborne polarization measurements, Geophys. Res. Lett., 25, 1879–1882, https://doi.org/10.1029/98gl01221, 1998. 
Che, H., Yang, L., Liu, C., Xia, X., Wang, Y., Wang, H., Wang, H., Lu, X., and Zhang, X.: Long-term validation of MODIS C6 and C6.1 Dark Target aerosol products over China using CARSNET and AERONET, Chemosphere, 236, 124268, https://doi.org/10.1016/j.chemosphere.2019.06.238, 2019. 
Download
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols