Articles | Volume 15, issue 15
https://doi.org/10.5194/amt-15-4531-2022
https://doi.org/10.5194/amt-15-4531-2022
Research article
 | 
10 Aug 2022
Research article |  | 10 Aug 2022

On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders

Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024,https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary

Cited articles

Altadill, F., Belehaki, A., Blanch, E., Borries, C., Buresova, D., Chum, J., Galkin, I., Haralambus, H., Juan Zornoza, J. M., Kutiev, I., Oikonomou, C., Sanz Subirana, J., Segarra, A., and Tsagouri, I.: Report on the design and specifications of the TID algorithms and products, Zenodo, https://doi.org/10.5281/zenodo.2590419, 2019. a, b, c
Barrick, D.: Remote sensing of sea state by radar, in: Ocean 72 – IEEE International Conference on Engineering in the Ocean Environment, Newport RI, USA, 13–15 September 1972, IEEE, 186–192, https://doi.org/10.1109/OCEANS.1972.1161190, 1972. a
Barrick, D. E., Evans, M. W., and Weber, B. L.: Ocean Surface Currents Mapped by Radar, Science, 198, 138–144, https://doi.org/10.1126/science.198.4313.138, 1977. a
Belehaki, A., Tsagouri, I., Altadill, D., Blanch, E., Borries, C., Buresova, D., Chum, J., Galkin, I., Juan, J. M., Segarra, A., Timoté, C. C., Tziotziou, K., Verhulst, T. G. W., and Watermann, J.: An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project, J. Space Weather Spa., 10, 42, https://doi.org/10.1051/swsc/2020043, 2020. a, b, c, d
Beley, V. S., Galushko, V. G., and Yampolski, Y. M.: Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations, Radio Sci., 30, 1739–1752, https://doi.org/10.1029/95RS01992, 1995. a, b
Download
Short summary
This investigation demonstrates how useful ionospheric parameters can be extracted from existing high-frequency radars that are used for oceanographic research. The methodology presented can be used by scientists and radio amateurs to understand ionospheric dynamics.