Articles | Volume 16, issue 2
https://doi.org/10.5194/amt-16-403-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-403-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating the dependence of mineral dust depolarization on complex refractive index and size with a laboratory polarimeter at 180.0° lidar backscattering angle
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, Villeurbanne 69622, France
Danaël Cholleton
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, Villeurbanne 69622, France
Clément Noël
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, Villeurbanne 69622, France
Patrick Rairoux
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, Villeurbanne 69622, France
Related authors
Sébastien Bau, Vincent Crenn, Joris Leglise, Sébastien Jacquinot, Christophe Debert, Denis Petitprez, Valentine Bizet, Lara Leclerc, Alain Miffre, Danael Cholleton, Alec Rose, Alexandre Tomas, Amel Kort, Didier Hebert, Aurélie Joubert, Florence Deschamps, Sébastien Ritoux, Lyes Ait Ali Yahia, and François Gaie-Levrel
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-39, https://doi.org/10.5194/ar-2025-39, 2025
Preprint under review for AR
Short summary
Short summary
This study reports from an inter-laboratory comparison to assess particle size distributions of three test aerosols using 35 OPCs from 16 partners over 40 weeks. Despite a common protocol and a shared reference OPC, notable inter-instrument differences appeared, highlighting the challenge of achieving consistent results across laboratories. The resulting database cannot yet allow define good laboratory practices, but it offers a methodology and reference data to improve OPC reliability.
Danaël Cholleton, Émilie Bialic, Antoine Dumas, Pascal Kaluzny, Patrick Rairoux, and Alain Miffre
Atmos. Meas. Tech., 15, 1021–1032, https://doi.org/10.5194/amt-15-1021-2022, https://doi.org/10.5194/amt-15-1021-2022, 2022
Short summary
Short summary
While pollen impacts public health and the Earth’s climate, the identification of each pollen taxon remains challenging. In this context, a laboratory evaluation of the polarimetric light-scattering characteristics of ragweed, ash, birch and pine pollen, when embedded in ambient air, is here performed at two wavelengths. Interestingly, the achieved precision of the retrieved scattering matrix elements allows unequivocal light scattering characteristics of each studied taxon to be identified.
Sébastien Bau, Vincent Crenn, Joris Leglise, Sébastien Jacquinot, Christophe Debert, Denis Petitprez, Valentine Bizet, Lara Leclerc, Alain Miffre, Danael Cholleton, Alec Rose, Alexandre Tomas, Amel Kort, Didier Hebert, Aurélie Joubert, Florence Deschamps, Sébastien Ritoux, Lyes Ait Ali Yahia, and François Gaie-Levrel
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-39, https://doi.org/10.5194/ar-2025-39, 2025
Preprint under review for AR
Short summary
Short summary
This study reports from an inter-laboratory comparison to assess particle size distributions of three test aerosols using 35 OPCs from 16 partners over 40 weeks. Despite a common protocol and a shared reference OPC, notable inter-instrument differences appeared, highlighting the challenge of achieving consistent results across laboratories. The resulting database cannot yet allow define good laboratory practices, but it offers a methodology and reference data to improve OPC reliability.
Danaël Cholleton, Émilie Bialic, Antoine Dumas, Pascal Kaluzny, Patrick Rairoux, and Alain Miffre
Atmos. Meas. Tech., 15, 1021–1032, https://doi.org/10.5194/amt-15-1021-2022, https://doi.org/10.5194/amt-15-1021-2022, 2022
Short summary
Short summary
While pollen impacts public health and the Earth’s climate, the identification of each pollen taxon remains challenging. In this context, a laboratory evaluation of the polarimetric light-scattering characteristics of ragweed, ash, birch and pine pollen, when embedded in ambient air, is here performed at two wavelengths. Interestingly, the achieved precision of the retrieved scattering matrix elements allows unequivocal light scattering characteristics of each studied taxon to be identified.
Cited articles
Belegante, L., Bravo-Aranda, J. A., Freudenthaler, V., Nicolae, D., Nemuc, A., Ene, D., Alados-Arboledas, L., Amodeo, A., Pappalardo, G., D'Amico, G., Amato, F., Engelmann, R., Baars, H., Wandinger, U., Papayannis, A., Kokkalis, P., and Pereira, S. N.: Experimental techniques for the calibration of lidar depolarization channels in EARLINET, Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, 2018.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by
small particles, Wiley-VCH, Weinheim, 530 pp., ISBN 9783527618163, 1983.
Bristow, C. S., Hudson-Edwards, K. A., and Chappell, A.: Fertilizing the
Amazon and equatorial Atlantic with West African dust, Geophys. Res. Lett., 37, L14807, https://doi.org/10.1029/2010GL043486, 2010.
Bullard, J. E. and White, K.: Quantifying iron oxide coatings on dune sands
using spectrometric measurements: An example from the Simpson-Strzelecki Desert, Australia, J. Geophys. Res.-Sol. Ea., 107, ECV 5-1–ECV 5-11,
https://doi.org/10.1029/2001JB000454, 2002.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Burton, S. P., Chemyakin, E., Liu, X., Knobelspiesse, K., Stamnes, S., Sawamura, P., Moore, R. H., Hostetler, C. A., and Ferrare, R. A.: Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals, Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, 2016.
Caponi, L., Formenti, P., Massabó, D., Di Biagio, C., Cazaunau, M., Pangui, E., Chevaillier, S., Landrot, G., Andreae, M. O., Kandler, K., Piketh, S., Saeed, T., Seibert, D., Williams, E., Balkanski, Y., Prati, P., and Doussin, J.-F.: Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study, Atmos. Chem. Phys., 17, 7175–7191, https://doi.org/10.5194/acp-17-7175-2017, 2017.
Cholleton, D., Rairoux, P., and Miffre, A.: Laboratory Evaluation of the
(355, 532) nm Particle Depolarization Ratio of Pure Pollen at
180.0∘ Lidar Backscattering Angle, Remote Sens., 14, 3767,
https://doi.org/10.3390/rs14153767, 2022.
David, G., Miffre, A., Thomas, B., and Rairoux, P.: Sensitive and accurate
dual-wavelength UV-VIS polarization detector for optical remote sensing of
tropospheric aerosols, Appl. Phys. B, 108, 197–216,
https://doi.org/10.1007/s00340-012-5066-x, 2012.
David, G., Thomas, B., Nousiainen, T., Miffre, A., and Rairoux, P.: Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix, Atmos. Chem. Phys., 13, 6757–6776, https://doi.org/10.5194/acp-13-6757-2013, 2013.
David, G., Thomas, B., Dupart, Y., D'Anna, B., George, C., Miffre, A., and
Rairoux, P.: UV polarization lidar for remote sensing new particles
formation in the atmosphere, Opt. Express, 22, A1009, https://doi.org/10.1364/OE.22.0A1009, 2014.
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, 2019.
Dupart, Y., King, S. M., Nekat, B., Nowak, A., Wiedensohler, A., Herrmann,
H., David, G., Thomas, B., Miffre, A., Rairoux, P., D'Anna, B., and George,
C.: Mineral dust photochemistry induces nucleation events in the presence of
SO2, P. Natl. Acad. Sci. USA, 109, 20842–20847, https://doi.org/10.1073/pnas.1212297109, 2012.
Formenti, P., Caquineau, S., Chevaillier, S., Klaver, A., Desboeufs, K.,
Rajot, J. L., Belin, S., and Briois, V.: Dominance of goethite over hematite
in iron oxides of mineral dust from Western Africa: Quantitative
partitioning by X-ray absorption spectroscopy, J. Geophys. Res.-Atmos., 119, 12740–12754, https://doi.org/10.1002/2014JD021668, 2014.
Francis, D., Nelli, N., Fonseca, R., Weston, M., Flamant, C., and Cherif,
C.: The dust load and radiative impact associated with the June 2020
historical Saharan dust storm, Atmos. Environ., 268, 118808,
https://doi.org/10.1016/j.atmosenv.2021.118808, 2022.
Freudenthaler, V.: About the effects of polarising optics on lidar signals and the Δ90 calibration, Atmos. Meas. Tech., 9, 4181–4255, https://doi.org/10.5194/amt-9-4181-2016, 2016.
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M.,
Ansmann, A., MüLLER, D., Althausen, D., Wirth, M., Fix, A., Ehret, G.,
Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner,
M.: Depolarization ratio profiling at several wavelengths in pure Saharan
dust during SAMUM 2006, Tellus B, 61, 165–179, https://doi.org/10.1111/j.1600-0889.2008.00396.x, 2009.
Gasteiger, J., Wiegner, M., GROß, S., Freudenthaler, V., Toledano, C.,
Tesche, M., and Kandler, K.: Modelling lidar-relevant optical properties of
complex mineral dust aerosols, Tellus B, 63, 725–741, https://doi.org/10.1111/j.1600-0889.2011.00559.x, 2011.
Gautam, P., Maughan, J. B., Ilavsky, J., and Sorensen, C. M.: Light
scattering study of highly absorptive, non-fractal, hematite aggregates, J.
Quant. Spectrosc. Ra., 246, 106919, https://doi.org/10.1016/j.jqsrt.2020.106919, 2020.
Glen, A. and Brooks, S. D.: A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud and Aerosol Spectrometer with Polarization (CASPOL), Atmos. Chem. Phys., 13, 1345–1356, https://doi.org/10.5194/acp-13-1345-2013, 2013.
Go, S., Lyapustin, A., Schuster, G. L., Choi, M., Ginoux, P., Chin, M., Kalashnikova, O., Dubovik, O., Kim, J., da Silva, A., Holben, B., and Reid, J. S.: Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations, Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, 2022.
Gómez Martín, J. C., Guirado, D., Frattin, E., Bermudez-Edo, M.,
Cariñanos Gonzalez, P., Olmo Reyes, F. J., Nousiainen, T.,
Gutiérrez, P. J., Moreno, F., and Muñoz, O.: On the application of
scattering matrix measurements to detection and identification of major
types of airborne aerosol particles: Volcanic ash, desert dust and pollen,
J. Quant. Spectrosc. Ra., 271, 107761, https://doi.org/10.1016/j.jqsrt.2021.107761, 2021.
Haarig, M., Ansmann, A., Engelmann, R., Baars, H., Toledano, C., Torres, B., Althausen, D., Radenz, M., and Wandinger, U.: First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dust, Atmos. Chem. Phys., 22, 355–369, https://doi.org/10.5194/acp-22-355-2022, 2022.
Hofer, J., Ansmann, A., Althausen, D., Engelmann, R., Baars, H., Fomba, K. W., Wandinger, U., Abdullaev, S. F., and Makhmudov, A. N.: Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm, Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, 2020.
Hu, Q., Wang, H., Goloub, P., Li, Z., Veselovskii, I., Podvin, T., Li, K., and Korenskiy, M.: The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China, Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, 2020.
Huang, Y., Kok, J. F., Saito, M., and Muñoz, O.: Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-633, in review, 2022.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., 2021.
Iwai, T.: Polarization Analysis of Light Scattered by Pollen Grains of
Cryptomeria japonica, Jpn. J. Appl. Phys., 52, 062404, https://doi.org/10.7567/JJAP.52.062404, 2013.
Järvinen, E., Kemppinen, O., Nousiainen, T., Kociok, T., Möhler, O.,
Leisner, T., and Schnaiter, M.: Laboratory investigations of mineral dust
near-backscattering depolarization ratios, J. Quant. Spectrosc. Ra., 178, 192–208, https://doi.org/10.1016/j.jqsrt.2016.02.003, 2016.
Kahnert, M.: Modelling radiometric properties of inhomogeneous mineral dust
particles: Applicability and limitations of effective medium theories, J.
Quant. Spectrosc. Ra., 152, 16–27, https://doi.org/10.1016/j.jqsrt.2014.10.025, 2015.
Kahnert, M., Kanngießer, F., Järvinen, E., and Schnaiter, M.:
Aerosol-optics model for the backscatter depolarisation ratio of mineral
dust particles, J. Quant. Spectrosc. Ra., 254, 107177, https://doi.org/10.1016/j.jqsrt.2020.107177, 2020.
Kandler, K., Lieke, K., Benker, N., Emmel, C., Küpper, M.,
Müller-Ebert, D., Ebert, M., Scheuvens, D., Schladitz, A., Schütz,
L., and Weinbruch, S.: Electron microscopy of particles collected at Praia,
Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry,
shape, mixing state and complex refractive index, Tellus B, 63, 475–496, https://doi.org/10.1111/j.1600-0889.2011.00550.x, 2011.
Kosmopoulos, P. G., Kazadzis, S., Taylor, M., Athanasopoulou, E., Speyer, O., Raptis, P. I., Marinou, E., Proestakis, E., Solomos, S., Gerasopoulos, E., Amiridis, V., Bais, A., and Kontoes, C.: Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements, Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017, 2017.
Lamb, K. D., Matsui, H., Katich, J. M., Perring, A. E., Spackman, J. R.,
Weinzierl, B., Dollner, M., and Schwarz, J. P.: Global-scale constraints on
light-absorbing anthropogenic iron oxide aerosols, Npj Clim. Atmospheric
Sci., 4, 1–12, 2021.
Lindqvist, H., Jokinen, O., Kandler, K., Scheuvens, D., and Nousiainen, T.: Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes, Atmos. Chem. Phys., 14, 143–157, https://doi.org/10.5194/acp-14-143-2014, 2014.
Liu, J., Zhang, Q., Huo, Y., Wang, J., and Zhang, Y.: An experimental study on light scattering matrices for Chinese loess dust with different particle size distributions, Atmos. Meas. Tech., 13, 4097–4109, https://doi.org/10.5194/amt-13-4097-2020, 2020.
Longtin, D. R., Shettle, E. P., Hummel, J. R., and Pryce, J. D.: A wind
dependent desert aerosol model: Radiative properties, OPTIMETRICS INC
BURLINGTON MA, Report AD-A201 951, 39 pp., https://apps.dtic.mil/sti/citations/ADA201951 (last access: 13 January 2023), 1988.
Luo, J., Li, Z., Fan, C., Xu, H., Zhang, Y., Hou, W., Qie, L., Gu, H., Zhu, M., Li, Y., and Li, K.: The polarimetric characteristics of dust with irregular shapes: evaluation of the spheroid model for single particles, Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, 2022.
Mamouri, R.-E. and Ansmann, A.: Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles, Atmos. Meas. Tech., 10, 3403–3427, https://doi.org/10.5194/amt-10-3403-2017, 2017.
Mehri, T., Kemppinen, O., David, G., Lindqvist, H., Tyynelä, J.,
Nousiainen, T., Rairoux, P., and Miffre, A.: Investigating the size, shape
and surface roughness dependence of polarization lidars with
light-scattering computations on real mineral dust particles: Application to
dust particles' external mixtures and dust mass concentration retrievals,
Atmos. Res., 203, 44–61, https://doi.org/10.1016/j.atmosres.2017.11.027, 2018.
Meland, B., Kleiber, P. D., Grassian, V. H., and Young, M. A.: Visible light
scattering study at 470, 550, and 660nm of components of mineral dust
aerosol: Hematite and goethite, J. Quant. Spectrosc. Ra., 112, 1108–1118, https://doi.org/10.1016/j.jqsrt.2010.12.002, 2011.
Miffre, A., David, G., Thomas, B., and Rairoux, P.: Atmospheric
non-spherical particles optical properties from UV-polarization lidar and
scattering matrix, Geophys. Res. Lett., 38, L16804, https://doi.org/10.1029/2011GL048310, 2011.
Miffre, A., Mehri, T., Francis, M., and Rairoux, P.: UV–VIS depolarization
from Arizona Test Dust particles at exact backscattering angle, J. Quant.
Spectrosc. Ra., 169, 79–90, https://doi.org/10.1016/j.jqsrt.2015.09.016, 2016.
Miffre, A., Cholleton, D., Mehri, T., and Rairoux, P.: Remote Sensing
Observation of New Particle Formation Events with a (UV, VIS) Polarization
Lidar, Remote Sens., 11, 1761, https://doi.org/10.3390/rs11151761, 2019.
Miffre, A., Cholleton, D., and Rairoux, P.: On the use of light polarization
to investigate the size, shape, and refractive index dependence of
backscattering Ångström exponents, Opt. Lett., 45, 1084–1087,
https://doi.org/10.1364/OL.385107, 2020.
Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a
current FORTRAN implementation of the T-matrix method for randomly oriented,
rotationally symmetric scatterers, J. Quant. Spectrosc. Ra., 60, 309–324, https://doi.org/10.1016/S0022-4073(98)00008-9, 1998.
Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A.: Modeling
phase functions for dustlike tropospheric aerosols using a shape mixture of
randomly oriented polydisperse spheroids, J. Geophys. Res.-Atmos., 102,
16831–16847, https://doi.org/10.1029/96JD02110, 1997.
Mishchenko, M. I., Travis, L. D., and Lacis, A. A.: Scattering, Absorption,
and Emission of Light by Small Particles, Cambridge University Press, 492 pp., ISBN 9780521782524, 2002.
Mishchenko, M. I., Liu, L., and Videen, G.: Conditions of applicability of
the single-scattering approximation, Opt. Express, 15, 7522,
https://doi.org/10.1364/OE.15.007522, 2007.
Monge, M. E., Rosenørn, T., Favez, O., Müller, M., Adler, G., Abo
Riziq, A., Rudich, Y., Herrmann, H., George, C., and D'Anna, B.: Alternative
pathway for atmospheric particles growth, P. Natl. Acad. Sci. USA, 109,
6840–6844, https://doi.org/10.1073/pnas.1120593109, 2012.
Müller, D., Veselovskii, I., Kolgotin, A., Tesche, M., Ansmann, A., and
Dubovik, O.: Vertical profiles of pure dust and mixed smoke–dust plumes
inferred from inversion of multiwavelength Raman/polarization lidar data and
comparison to AERONET retrievals and in situ observations, Appl. Optics, 52,
3178–3202, https://doi.org/10.1364/AO.52.003178, 2013.
Nousiainen, T.: Optical modeling of mineral dust particles: A review, J.
Quant. Spectrosc. Ra., 110, 1261–1279, https://doi.org/10.1016/j.jqsrt.2009.03.002, 2009.
Ryder, C. L., Highwood, E. J., Rosenberg, P. D., Trembath, J., Brooke, J. K., Bart, M., Dean, A., Crosier, J., Dorsey, J., Brindley, H., Banks, J., Marsham, J. H., McQuaid, J. B., Sodemann, H., and Washington, R.: Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign, Atmos. Chem. Phys., 13, 303–325, https://doi.org/10.5194/acp-13-303-2013, 2013.
Ryder, C. L., Highwood, E. J., Walser, A., Seibert, P., Philipp, A., and Weinzierl, B.: Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara, Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019,
2019.
Sakai, T., Nagai, T., Zaizen, Y., and Mano, Y.: Backscattering linear
depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate
particles simulated in a laboratory chamber, Appl. Optics, 49, 4441–4449,
https://doi.org/10.1364/AO.49.004441, 2010.
Scanza, R. A., Mahowald, N., Ghan, S., Zender, C. S., Kok, J. F., Liu, X., Zhang, Y., and Albani, S.: Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing, Atmos. Chem. Phys., 15, 537–561, https://doi.org/10.5194/acp-15-537-2015, 2015.
Schnaiter, M., Büttner, S., Möhler, O., Skrotzki, J., Vragel, M., and Wagner, R.: Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics, Atmos. Chem. Phys., 12, 10465–10484, https://doi.org/10.5194/acp-12-10465-2012, 2012.
Shurcliff, W. A.: Polarized Light: Production and Use, Harvard University Press, Cambridge, MA and London, England, 181 pp., https://doi.org/10.4159/harvard.9780674424135, 1962.
Sugimoto, N. and Lee, C. H.: Characteristics of dust aerosols inferred from
lidar depolarization measurements at two wavelengths, Appl. Optics, 45,
7468–7474, https://doi.org/10.1364/AO.45.007468, 2006.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R.,
Freudenthaler, V., and Groß, S.: Vertically resolved separation of dust
and smoke over Cape Verde using multiwavelength Raman and polarization
lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res., 114,
D13202, https://doi.org/10.1029/2009JD011862, 2009.
Tesche, M., Kolgotin, A., Haarig, M., Burton, S. P., Ferrare, R. A., Hostetler, C. A., and Müller, D.: : what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?, Atmos. Meas. Tech., 12, 4421–4437, https://doi.org/10.5194/amt-12-4421-2019, 2019.
van de Hulst, H. C.: Light Scattering by Small Particles, Courier
Corporation, 500 pp., 1957.
Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N.,
Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K., Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O., Sauer, D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano,
C., and Walser, A.: The Saharan Aerosol Long-Range Transport and
Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights,
B. Am. Meteorol. Soc., 98, 1427–1451, https://doi.org/10.1175/BAMS-D-15-00142.1, 2017.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmospheric Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Wiscombe, W. J. and Mugnai, A.: Single scattering from nonspherical
Chebyshev particles: a compendium of calculations, NASA Reference Publication (RP), no. NASA-RP-1157, 114 pp., https://ntrs.nasa.gov/citations/19860007670 (last access: 13 January 2023), 1986.
Zong, R., Weng, F., Bi, L., Lin, X., Rao, C., and Li, W.: Impact of hematite
on dust absorption at wavelengths ranging from 0.2 to 1.0 µm: an
evaluation of literature data using the T-matrix method, Opt. Express, 29,
17405–17427, https://doi.org/10.1364/OE.427611, 2021.
Zubko, E., Muinonen, K., Muñoz, O., Nousiainen, T., Shkuratov, Y., Sun,
W., and Videen, G.: Light scattering by feldspar particles: Comparison of
model agglomerate debris particles with laboratory samples, J. Quant.
Spectrosc. Ra., 131, 175–187, https://doi.org/10.1016/j.jqsrt.2013.01.017, 2013.
Short summary
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with a π-polarimeter operating at lidar 180 ° and at (355, 532) nm wavelengths. The hematite depolarization equals (10±1) % at 355 nm for coarser particles, while that of silica is (33±1) %. This huge difference is explained by accounting for the high imaginary part of the hematite complex refractive index, thus revealing the key role played by light absorption in mineral dust lidar depolarization.
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with...