Articles | Volume 17, issue 3
Research article
14 Feb 2024
Research article |  | 14 Feb 2024

Forward operator for polarimetric radio occultation measurements

Daisuke Hotta, Katrin Lonitz, and Sean Healy

Related authors

Accelerating assimilation development for new observing systems using EFSO
Guo-Yuan Lien, Daisuke Hotta, Eugenia Kalnay, Takemasa Miyoshi, and Tse-Chun Chen
Nonlin. Processes Geophys., 25, 129–143,,, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799,,, 2024
Short summary
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599,,, 2024
Short summary
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514,,, 2024
Short summary
Radar and environment-based hail damage estimates using machine learning
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422,,, 2024
Short summary
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245,,, 2024
Short summary

Cited articles

Aonashi, K. and Eito, H.: Displaced ensemble variational assimilation method to incorporate microwave imager brightness temperatures into a cloud-resolving model, J. Meteorol. Soc. Jpn., 89, 175–194, 2011. a
Bonavita, M.: On some aspects of the impact of GPSRO observations in global numerical weather prediction, Q. J. Roy. Meteor. Soc., 140, 2546–2562, 2014. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather radar: principles and applications, Cambridge University Press,, 2001. a, b, c
Cardellach, E., Oliveras, S., Rius, A., Tomás, S., Ao, C., Franklin, G., Iijima, B., Kuang, D., Meehan, T., Padullés, R., de la Torre Juárez, M., Turk, F. J., Hunt, D. C., Schreiner, W. S., Sokolovskiy, S. V., Van Hove, T., Weiss, J. P., Yoon, Y., Zeng, Z., Clapp, J., Xia-Serafino, W., and Cerezo, F..: Sensing heavy precipitation with GNSS polarimetric radio occultations, Geophys. Res. Lett., 46, 1024–1031, 2019. a, b, c
Cardellach, E., Padullés, R., and Oliveras, S.: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ), ICE-CSIC/IEEC [data set],​ (last access: 5 February 2024), 2022. a
Short summary
Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a new type of GNSS observations that can detect heavy precipitation along the ray path between the emitter and receiver satellites. As a first step towards using these observations in numerical weather prediction (NWP), we developed a computer code that simulates GNSS-PRO observations from forecast fields produced by an NWP model. The quality of the developed simulator is evaluated with a number of case studies.