Articles | Volume 7, issue 8
Atmos. Meas. Tech., 7, 2373–2387, 2014
https://doi.org/10.5194/amt-7-2373-2014
Atmos. Meas. Tech., 7, 2373–2387, 2014
https://doi.org/10.5194/amt-7-2373-2014

Research article 06 Aug 2014

Research article | 06 Aug 2014

Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach

S. Segura et al.

Related authors

Analysis of a strong wildfire event over Valencia (Spain) during Summer 2012 – Part 1: Aerosol microphysics and optical properties
J. L. Gómez-Amo, V. Estellés, S. Segura, C. Marcos, A. R. Esteve, R. Pedrós, M. P. Utrillas, and J. A. Martínez-Lozano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-22639-2013,https://doi.org/10.5194/acpd-13-22639-2013, 2013
Revised manuscript not accepted

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Data imputation in in situ-measured particle size distributions by means of neural networks
Pak Lun Fung, Martha Arbayani Zaidan, Ola Surakhi, Sasu Tarkoma, Tuukka Petäjä, and Tareq Hussein
Atmos. Meas. Tech., 14, 5535–5554, https://doi.org/10.5194/amt-14-5535-2021,https://doi.org/10.5194/amt-14-5535-2021, 2021
Short summary
Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg
Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, L. Drew Hill, Andrew H. A. White, Jürgen Schnelle-Kreis, Jan Bendl, Gert Jakobi, Brigitte Schloter-Hai, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 5139–5151, https://doi.org/10.5194/amt-14-5139-2021,https://doi.org/10.5194/amt-14-5139-2021, 2021
Short summary
New correction method for the scattering coefficient measurements of a three-wavelength nephelometer
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021,https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Estimating mean molecular weight, carbon number, and OM∕OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network
Amir Yazdani, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 14, 4805–4827, https://doi.org/10.5194/amt-14-4805-2021,https://doi.org/10.5194/amt-14-4805-2021, 2021
Short summary
Modeled source apportionment of black carbon particles coated with a light-scattering shell
Aki Virkkula
Atmos. Meas. Tech., 14, 3707–3719, https://doi.org/10.5194/amt-14-3707-2021,https://doi.org/10.5194/amt-14-3707-2021, 2021
Short summary

Cited articles

Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998.
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., and Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance Characteristics of a High Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, 1996.
Ångström, A.: On the Atmospheric Transmission of Sun Radiation and on Dust in the Air, Geogr. Ann., 11, 156–166, 1929.
Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., and Ogren, J. A.: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer, Aerosol Sci. Technol., 39, 17–29, 2005.
Ballach, J., Hitzenberger, R., Schultz, E., and Jaeschke, W.: Development of an improved optical transmission technique for black carbon (BC) analysis, Atmos. Environ., 35, 2089–2100, 2001.