Articles | Volume 7, issue 11
https://doi.org/10.5194/amt-7-3927-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-7-3927-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Improving HelioClim-3 estimates of surface solar irradiance using the McClear clear-sky model and recent advances in atmosphere composition
Z. Qu
MINES ParisTech, PSL Research University, O.I.E. Centre for Observation, Impacts, Energy, CS 10207, rue Claude Daunesse, 06904 Sophia Antipolis CEDEX, France
B. Gschwind
MINES ParisTech, PSL Research University, O.I.E. Centre for Observation, Impacts, Energy, CS 10207, rue Claude Daunesse, 06904 Sophia Antipolis CEDEX, France
M. Lefevre
MINES ParisTech, PSL Research University, O.I.E. Centre for Observation, Impacts, Energy, CS 10207, rue Claude Daunesse, 06904 Sophia Antipolis CEDEX, France
MINES ParisTech, PSL Research University, O.I.E. Centre for Observation, Impacts, Energy, CS 10207, rue Claude Daunesse, 06904 Sophia Antipolis CEDEX, France
Related authors
A. Oumbe, Z. Qu, P. Blanc, M. Lefèvre, L. Wald, and S. Cros
Geosci. Model Dev., 7, 1661–1669, https://doi.org/10.5194/gmd-7-1661-2014, https://doi.org/10.5194/gmd-7-1661-2014, 2014
M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette
Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, https://doi.org/10.5194/amt-6-2403-2013, 2013
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023, https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
Mathilde Marchand, Yves-Marie Saint-Drenan, Laurent Saboret, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 17, 143–152, https://doi.org/10.5194/asr-17-143-2020, https://doi.org/10.5194/asr-17-143-2020, 2020
Short summary
Short summary
The present work deals with the spatial consistency of two well-known databases of solar radiation received at ground level: the CAMS Radiation Service database version 3.2, abbreviated as CAMS-Rad and the HelioClim-3 database version 5, abbreviated as HC3v5. Both databases are derived from satellite images. For both databases, there is no noticeable spatial trend in the standard deviation.
Claire Thomas, Stephen Dorling, William Wandji Nyamsi, Lucien Wald, Stéphane Rubino, Laurent Saboret, Mélodie Trolliet, and Etienne Wey
Adv. Sci. Res., 16, 229–240, https://doi.org/10.5194/asr-16-229-2019, https://doi.org/10.5194/asr-16-229-2019, 2019
Short summary
Short summary
Solar radiation is the second main important factors for plant growth after temperature. More precisely, PAR, which stands for Photosynthetically Active Radiation, is the portion of the solar spectrum that is efficient for photosynthesis. Due to the scarcity of ground measurements, researchers have developed methods to estimate this variable from satellite imagery. This paper compares several methods to assess satellite-derived PAR against measurements in the UK and in France.
Mathilde Marchand, Mireille Lefèvre, Laurent Saboret, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 16, 103–111, https://doi.org/10.5194/asr-16-103-2019, https://doi.org/10.5194/asr-16-103-2019, 2019
Short summary
Short summary
The present work deals with two well-known databases of hourly mean of solar irradiance that are derived from satellite imagery. The spatial consistency of the uncertainties of these databases is verified against measurements performed within a dense network of ground stations in The Netherlands from the Royal Meteorological Institute KNMI for the period 2014–2017.
The obtained results are presented for both databases. And a discussion is proposed.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Mélodie Trolliet, Jakub P. Walawender, Bernard Bourlès, Alexandre Boilley, Jörg Trentmann, Philippe Blanc, Mireille Lefèvre, and Lucien Wald
Ocean Sci., 14, 1021–1056, https://doi.org/10.5194/os-14-1021-2018, https://doi.org/10.5194/os-14-1021-2018, 2018
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
Mélodie Trolliet and Lucien Wald
Adv. Sci. Res., 15, 127–136, https://doi.org/10.5194/asr-15-127-2018, https://doi.org/10.5194/asr-15-127-2018, 2018
Yves-Marie Saint-Drenan, Lucien Wald, Thierry Ranchin, Laurent Dubus, and Alberto Troccoli
Adv. Sci. Res., 15, 51–62, https://doi.org/10.5194/asr-15-51-2018, https://doi.org/10.5194/asr-15-51-2018, 2018
Short summary
Short summary
Our approach allows estimating the total photovoltaic (PV) power generation in different European countries from meteorological data. It is aimed at being easy to implement since it does not require any plant information or prior knowledge on the installed PV plants.
Marie Opálková, Martin Navrátil, Vladimír Špunda, Philippe Blanc, and Lucien Wald
Earth Syst. Sci. Data, 10, 837–846, https://doi.org/10.5194/essd-10-837-2018, https://doi.org/10.5194/essd-10-837-2018, 2018
Short summary
Short summary
Files with irradiances of a few spectral regions of incident solar radiation and some meteorological variables including concentrations of some air pollutants measured for 2.5 years at 3 stations in Ostrava (CZ) were prepared. Special attention was given to the data quality and the process of quality check was described. This database offers an ensemble of data with high temporal resolution and creates a source on radiation in relation with environment and vegetation in polluted areas of cities.
Mathilde Marchand, Abdellatif Ghennioui, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 15, 21–29, https://doi.org/10.5194/asr-15-21-2018, https://doi.org/10.5194/asr-15-21-2018, 2018
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Nonlin. Processes Geophys., 25, 19–37, https://doi.org/10.5194/npg-25-19-2018, https://doi.org/10.5194/npg-25-19-2018, 2018
Short summary
Short summary
We employ the Hilbert–Huang transform to study the temporal variability in time series of daily means of the surface solar irradiance (SSI) at different locations around the world. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency "weather noise", irrespective of the geographical location or of the local climate. Our findings can improve models for estimating SSI from satellite images or forecasts of the SSI.
Philippe Blanc, Benoit Gschwind, Lionel Ménard, and Lucien Wald
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-141, https://doi.org/10.5194/essd-2017-141, 2018
Revised manuscript not accepted
Short summary
Short summary
The construction of worldwide maps of surface bidirectional reflectance distribution function (BRDF) parameters is presented. The original data stems from the NASA which is making available maps of BRDF parameters from the Moderate Resolution Imaging Spectroradiometer instrument. The original data has been averaged for each month for the period 2004–2011 and a spatial completion of data was performed. The dataset in NetCDF is referenced by doi:10.23646/85d2cd5f-ccaa-482e-a4c9-b6e0c59d966c.
William Wandji Nyamsi, Phillipe Blanc, John A. Augustine, Antti Arola, and Lucien Wald
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-512, https://doi.org/10.5194/bg-2017-512, 2018
Manuscript not accepted for further review
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating photosynthetically active radiation at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Philip D. Jones, Colin Harpham, Alberto Troccoli, Benoit Gschwind, Thierry Ranchin, Lucien Wald, Clare M. Goodess, and Stephen Dorling
Earth Syst. Sci. Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-2017, https://doi.org/10.5194/essd-9-471-2017, 2017
Short summary
Short summary
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity.The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from ftp://ecem.climate.copernicus.eu.
Marc Bengulescu, Philippe Blanc, Alexandre Boilley, and Lucien Wald
Adv. Sci. Res., 14, 35–48, https://doi.org/10.5194/asr-14-35-2017, https://doi.org/10.5194/asr-14-35-2017, 2017
Short summary
Short summary
This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of surface solar irradiance (SSI). Estimates of SSI from satellite-derived HelioClim-3 and radiation products from ERA-Interim and MERRA-2 re-analyses are compared to WRDC measurements. It is found that HelioClim-3 renders a more accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales.
Mathilde Marchand, Nasser Al-Azri, Armel Ombe-Ndeffotsing, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 14, 7–15, https://doi.org/10.5194/asr-14-7-2017, https://doi.org/10.5194/asr-14-7-2017, 2017
Short summary
Short summary
The solar hourly irradiation received at ground level estimated by the databases HelioClim-3v4, HelioClim-3v5 and Copernicus Atmosphere Monitoring Service (CAMS) Radiation Service are compared to measurements made in stations in Oman and Abu Dhabi. The correlation coefficients are greater than 0.97. The relative bias is less than 5%. Each database captures accurately the temporal and spatial variability of the irradiance field. The three databases are reliable sources to assess solar radiation.
Claire Thomas, Laurent Saboret, Etienne Wey, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 129–136, https://doi.org/10.5194/asr-13-129-2016, https://doi.org/10.5194/asr-13-129-2016, 2016
Short summary
Short summary
HelioClim-3 (version 4) is a satellite-derived solar surface irradiance database available at d-1 until 2015. To fulfill the requirements of numerous users, a new service based on the principle of persistence has been developed; it provides solar data in real time and forecasts until the end of the current day. The service exhibits good performances for 15 min and 1 h ahead forecasts, and degrades as the temporal horizon increases. Several customers have so far purchased this service.
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 121–127, https://doi.org/10.5194/asr-13-121-2016, https://doi.org/10.5194/asr-13-121-2016, 2016
Short summary
Short summary
The continuous wavelet (CWT) and the Hilbert–Huang transforms (HHT) are compared for the analysis of the temporal variability on ten years of daily means of the surface solar irradiance. In both cases, the variability exhibits a plateau between scales of two days and three months that has decreasing power with increasing scale, a spectral peak corresponding to the annual cycle, and a low power regime in-between. The HHT is shown to be suitable for inspecting the variability of the measurements.
Claire Thomas, Etienne Wey, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 81–86, https://doi.org/10.5194/asr-13-81-2016, https://doi.org/10.5194/asr-13-81-2016, 2016
Short summary
Short summary
Several satellite-derived solar surface irradiance databases provide long-term and homogeneously distributed information on the solar potential at ground level. This paper presents the validation results of three of these databases: HelioClim-3 (versions 4 and 5) and the CAMS radiation service, versus the measurements of 42 stations in Brazil. Despite a slight overestimation of the CAMS radiation service, the three databases are suitable for studies of the solar resources in Brazil.
Mireille Lefèvre and Lucien Wald
Adv. Sci. Res., 13, 21–26, https://doi.org/10.5194/asr-13-21-2016, https://doi.org/10.5194/asr-13-21-2016, 2016
Short summary
Short summary
The new CAMS (Copernicus Atmosphere Monitoring Service) McClear service is a practical easy-to-use tool to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. This article presents validation against 1 min measurements made at three very close stations in Israel in desert conditions. The good results demonstrate the accuracy of McClear and its ability to capture the temporal and spatial variability of the irradiance field.
Mohamed Korany, Mohamed Boraiy, Yehia Eissa, Youva Aoun, Magdy M. Abdel Wahab, Stéphane C. Alfaro, Philippe Blanc, Mossad El-Metwally, Hosni Ghedira, Katja Hungershoefer, and Lucien Wald
Earth Syst. Sci. Data, 8, 105–113, https://doi.org/10.5194/essd-8-105-2016, https://doi.org/10.5194/essd-8-105-2016, 2016
Short summary
Short summary
A database of global and diffuse components of the surface solar hourly irradiation measured from 2004 to 2010 at eight Egyptian meteorological stations is presented. At three sites, the direct component is also available. In addition, a series of meteorological variables is provided at the same hourly resolution. The measurements and quality checks applied to the data are detailed. Finally, 13500 to 29000 measurements of global and diffuse hourly irradiation are available at each site.
P. Blanc and L. Wald
Adv. Sci. Res., 13, 1–6, https://doi.org/10.5194/asr-13-1-2016, https://doi.org/10.5194/asr-13-1-2016, 2016
Short summary
Short summary
Time series of hourly measurements or modelled values of surface solar irradiation are increasingly available. Currently, no solar zenith and azimuth angles are associated to each measurement whereas such angles are necessary for handling the measured or modelled irradiations. A method is proposed to assess such angles with a great accuracy. It makes use of two modelled time-series that can be computed using the web site www.soda-pro.com for any site in the world.
Y. Eissa, P. Blanc, L. Wald, and H. Ghedira
Atmos. Meas. Tech., 8, 5099–5112, https://doi.org/10.5194/amt-8-5099-2015, https://doi.org/10.5194/amt-8-5099-2015, 2015
Short summary
Short summary
This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic beam and circumsolar irradiances under cloud-free conditions in a desert environment. By comparing the modelled irradiances against reference ground measurements, the monochromatic beam and circumsolar irradiances may very well be modelled using a set of inputs extracted from the AERONET data.
W. Wandji Nyamsi, A. Arola, P. Blanc, A. V. Lindfors, V. Cesnulyte, M. R. A. Pitkänen, and L. Wald
Atmos. Chem. Phys., 15, 7449–7456, https://doi.org/10.5194/acp-15-7449-2015, https://doi.org/10.5194/acp-15-7449-2015, 2015
Short summary
Short summary
A novel model of the absorption of radiation by ozone in the UV bands [283, 307]nm and [307, 328]nm yields improvements in the modeling of the transmissivity in these bands. This model is faster than detailed spectral calculations and is as accurate with maximum errors of respectively 0.0006 and 0.0143. How to practically implement this new parameterization in a radiative transfer model is discussed for the case of libRadtran.
W. Wandji Nyamsi, B. Espinar, P. Blanc, and L. Wald
Adv. Sci. Res., 12, 5–10, https://doi.org/10.5194/asr-12-5-2015, https://doi.org/10.5194/asr-12-5-2015, 2015
Short summary
Short summary
We propose an innovative method to estimate the Photosynthetically Active Radiation (PAR) under clear sky conditions derived from the fast approach of Kato et al. (1999). It provides very good results better than the two state-of-the-art empirical methods computing the daily mean of PAR from the daily mean of total irradiance. In addition, this technique may be extended to be able to accurately estimate other spectral quantities taking into account absorption of plants photosynthetic pigments.
P. Blanc, C. Coulaud, and L. Wald
Adv. Sci. Res., 12, 1–4, https://doi.org/10.5194/asr-12-1-2015, https://doi.org/10.5194/asr-12-1-2015, 2015
Short summary
Short summary
New Caledonia experiences a decrease in surface solar irradiation since 2004, of order of 4% of the mean yearly irradiation, and amounts to 9 W m 2. The preeminent roles of the changes in cloud cover and to a lesser extent, those in aerosol optical depth on the decrease in yearly irradiation are evidenced. The study highlights the role of data sets offering a worldwide coverage in understanding changes in solar radiation and planning large solar energy plants.
A. Oumbe, Z. Qu, P. Blanc, M. Lefèvre, L. Wald, and S. Cros
Geosci. Model Dev., 7, 1661–1669, https://doi.org/10.5194/gmd-7-1661-2014, https://doi.org/10.5194/gmd-7-1661-2014, 2014
M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette
Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, https://doi.org/10.5194/amt-6-2403-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Extended validation of Aeolus winds with wind-profiling radars in Antarctica and Arctic Sweden
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Long-term validation of Aeolus L2B wind products at Punta Arenas, Chile, and Leipzig, Germany
Daily satellite-based sunshine duration estimates over Brazil: Validation and inter-comparison
Turbulence kinetic energy dissipation rate: assessment of radar models from comparisons between 1.3 GHz wind profiler radar (WPR) and DataHawk UAV measurements
Statistical assessment of a Doppler radar model of TKE dissipation rate for low Richardson numbers (weakly stratified or strongly sheared conditions)
On the Use of Routine Airborne Observations for Evaluation and Monitoring of Satellite Observations of Thermodynamic Profiles
The impacts of assimilating Aeolus horizontal line-of-sight winds on numerical predictions of Hurricane Ida (2021) and a mesoscale convective system over the Atlantic Ocean
Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data
Behavior and mechanisms of Doppler wind lidar error in varying stability regimes
Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Comparison of global UV spectral irradiance measurements between a BTS CCD-array and a Brewer spectroradiometer
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Three-way calibration checks using ground-based, ship-based, and spaceborne radars
Rainfall retrieval algorithm for commercial microwave links: stochastic calibration
Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China
Towards operational multi-GNSS tropospheric products at GFZ Potsdam
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
Monitoring the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module instrument stability using desert sites
Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome
Interpreting estimated observation error statistics of weather radar measurements using the ICON-LAM-KENDA system
Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden
Intercomparison review of IPWV retrieved from INSAT-3DR sounder, GNSS and CAMS reanalysis data
Sensitivity of Aeolus HLOS winds to temperature and pressure specification in the L2B processor
Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign
Improved method of estimating temperatures at meteor peak heights
Error analyses of a multistatic meteor radar system to obtain a three-dimensional spatial-resolution distribution
Validation of wind measurements of two mesosphere–stratosphere–troposphere radars in northern Sweden and in Antarctica
Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia
A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Flywheel calibration of a continuous-wave coherent Doppler wind lidar
Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product
Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study
Validation of Aeolus wind products above the Atlantic Ocean
Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy
Inter-calibration of nine UV sensing instruments over Antarctica and Greenland since 1980
Inter-calibrating SMMR brightness temperatures over continental surfaces
Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations
Retrieval of lower-order moments of the drop size distribution using CSU-CHILL X-band polarimetric radar: a case study
Gradient boosting machine learning to improve satellite-derived column water vapor measurement error
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227, https://doi.org/10.5194/amt-16-4215-2023, https://doi.org/10.5194/amt-16-4215-2023, 2023
Short summary
Short summary
We compared 2 years of wind measurements by the Aeolus satellite with winds from two wind-profiler radars in Arctic Sweden and coastal Antarctica. Biases are similar in magnitude to results from other locations. They are smaller than in earlier studies due to more comparison points and improved criteria for data rejection. On the other hand, the standard deviation is somewhat higher because of degradation of the Aeolus lidar.
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023, https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary
Short summary
Aeolus is a satellite equipped with a Doppler wind lidar to detect global wind profiles. This study evaluates the impact of Aeolus winds on surface wind forecasts over tropical oceans and high-latitude regions based on the ECMWF observing system experiments. We find that Aeolus can slightly improve surface wind forecasts for the region > 60° N, especially from day 5 onwards. For other study regions, the impact of Aeolus is nearly neutral or limited, which requires further investigation.
Holger Baars, Joshua Walchester, Elizaveta Basharova, Henriette Gebauer, Martin Radenz, Johannes Bühl, Boris Barja, Ulla Wandinger, and Patric Seifert
Atmos. Meas. Tech., 16, 3809–3834, https://doi.org/10.5194/amt-16-3809-2023, https://doi.org/10.5194/amt-16-3809-2023, 2023
Short summary
Short summary
In 2018, the Aeolus satellite of the European Space Agency (ESA) was launched to improve weather forecasts through global measurements of wind profiles. Given the novel lidar technique onboard, extensive validation efforts have been needed to verify the observations. For this reason, we performed long-term validation measurements in Germany and Chile. We found significant improvement in the data products due to a new algorithm version and can confirm the general validity of Aeolus observations.
Maria Lívia Lins Mattos Gava, Simone Marilene Sievert da Costa Coelho, and Anthony Carlos Silva Porfírio
EGUsphere, https://doi.org/10.5194/egusphere-2023-1195, https://doi.org/10.5194/egusphere-2023-1195, 2023
Short summary
Short summary
This study assesses the effectiveness of two geostationary satellite-based sunshine duration datasets over Brazil. Statistical parameters were used to evaluate the products' performance. The results showed generally good agreement between satellite and ground observations with some regional discrepancies. Overall, both satellite products offer reliable data for various applications, benefiting from their high spatial resolution and low time latency.
Hubert Luce, Lakshmi Kantha, Hiroyuki Hashiguchi, Dale Lawrence, Abhiram Doddi, Tyler Mixa, and Masanori Yabuki
Atmos. Meas. Tech., 16, 3561–3580, https://doi.org/10.5194/amt-16-3561-2023, https://doi.org/10.5194/amt-16-3561-2023, 2023
Short summary
Short summary
Doppler radars can be used to estimate turbulence kinetic energy dissipation rates in the atmosphere. The performance of various models is evaluated from comparisons between UHF wind profiler and in situ measurements with UAVs. For the first time, we assess a model supposed to be valid for weak stratification or strong shear conditions. This model provides better agreements with in situ measurements than the classical model based on the hypothesis of a stable stratification.
Hubert Luce, Lakshmi Kantha, and Hiroyuki Hashiguchi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-141, https://doi.org/10.5194/amt-2023-141, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The potential ability of clear air radars to measure Turbulence Kinetic Energy (TKE) dissipation rate ε in the atmosphere is a major asset of these instruments, because of their continuous measurements. In the present work, we successfully tested the relevance of a model relating ε to the width of the Doppler spectrum peak and wind shear for shear-generated turbulence and we provide a physical interpretation of an empirical model in this context.
Timothy J. Wagner, Thomas August, Tim Hultberg, and Ralph A. Petersen
EGUsphere, https://doi.org/10.5194/egusphere-2023-794, https://doi.org/10.5194/egusphere-2023-794, 2023
Short summary
Short summary
Commercial passenger and freight aircraft need to know the temperature and pressure of the environments they fly through in order to safely operate. In this paper, we investigate how these observations can be used to evaluate and monitor the performance of satellite observations. Normally weather balloons are used for this, but in places like the United States there are many more airplane flights than weather balloon launches. This makes it much easier to compare to satellites.
Chengfeng Feng and Zhaoxia Pu
Atmos. Meas. Tech., 16, 2691–2708, https://doi.org/10.5194/amt-16-2691-2023, https://doi.org/10.5194/amt-16-2691-2023, 2023
Short summary
Short summary
This study demonstrates the positive impacts of assimilating Aeolus Mie-cloudy and Rayleigh-clear near-real-time horizontal line-of-sight winds on the analysis and forecasts of Hurricane Ida (2021) and a mesoscale convective system associated with an African easterly wave using the mesoscale community Weather Research and Forecasting model and the NCEP Gridpoint Statistical Interpolation-based three-dimensional ensemble-variational hybrid data assimilation system.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022, https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
Short summary
Integrated water vapour measurements are often compared for the calibration and validation of instruments or techniques. Measurements made at different altitudes must be corrected to account for the vertical variation of water vapour. This paper shows that the widely used empirical correction model has severe limitations that are overcome using the proposed model. The method is applied to the inter-comparison of GPS and satellite microwave radiometer data in a tropical mountainous area.
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022, https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Short summary
The Global Positioning System (GPS) radio occultation (RO) technique is a satellite-based method for producing highly accurate vertical profiles of atmospheric temperature and pressure. RO profiles are used to monitor global climate trends, particularly in that region of the atmosphere that includes the lower stratosphere. Two data sets spanning 1995–1997 that were produced from the first RO satellite are highly accurate and can be used to assess global atmospheric models.
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022, https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Short summary
Small-scale turbulence plays a vital role in the vertical exchange of heat, momentum and mass in the atmosphere. There are currently three models that can use spectrum width data of MST radar to calculate turbulence parameters. However, few studies have explored the applicability of the three calculation models. We compared and analysed the turbulence parameters calculated by three models. These results can provide a reference for the selection of models for calculating turbulence parameters.
Damao Zhang, Jennifer Comstock, and Victor Morris
Atmos. Meas. Tech., 15, 4735–4749, https://doi.org/10.5194/amt-15-4735-2022, https://doi.org/10.5194/amt-15-4735-2022, 2022
Short summary
Short summary
The planetary boundary layer is the lowest part of the atmosphere. Its structure and depth (PBLHT) significantly impact air quality, global climate, land–atmosphere interactions, and a wide range of atmospheric processes. To test the robustness of the ceilometer-estimated PBLHT under different atmospheric conditions, we compared ceilometer- and radiosonde-estimated PBLHTs using multiple years of U.S. DOE ARM measurements at various ARM observatories located around the world.
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-4585-2022, https://doi.org/10.5194/amt-15-4585-2022, 2022
Short summary
Short summary
Our work investigates the behavior of errors in remote-sensing wind lidar measurements due to turbulence. Using a virtual instrument, we measured winds in simulated atmospheric flows and decomposed the resulting error. Dominant error mechanisms, particularly vertical velocity variations and interactions with shear, were identified in ensemble data over three test cases. By analyzing the underlying mechanisms, the response of the error behavior to further varying flow conditions may be projected.
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022, https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary
Short summary
The evolution of the atmospheric boundary layer height (ABLH) has an important impact on meteorology. However, the complexity of the phenomena occurring within the ABL and the influence of advection and local accumulation processes often prevent an unambiguous determination of the ABLH. The paper reports results from an inter-comparison effort involving different sensors and techniques to measure the ABLH. Correlations between the ABLH and other atmospheric variables are also assessed.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Carmen González, José M. Vilaplana, José A. Bogeat, and Antonio Serrano
Atmos. Meas. Tech., 15, 4125–4133, https://doi.org/10.5194/amt-15-4125-2022, https://doi.org/10.5194/amt-15-4125-2022, 2022
Short summary
Short summary
Monitoring ultraviolet (UV) radiation is important since it can have harmful effects on the biosphere. Array spectroradiometers are increasingly used to measure UV as they are more versatile than scanning spectroradiometers. In this study, the long-term performance of the BTS-2048-UV-S-WP array spectroradiometer was assessed. The results show that the BTS can reliably measure both the UV index and UV radiation in the 300–360 nm range. Moreover, the BTS was stable and showed no seasonal behavior.
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022, https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary
Short summary
Lidars can measure the wind profile in the lower part of the atmosphere, provided that the wind field is horizontally uniform and does not change during the time of the measurement. These requirements are mostly not fulfilled in reality, and the lidar wind measurement will thus hold a certain error. We investigate different strategies for lidar wind profiling using a lidar simulator implemented in a numerical simulation of the wind field. Our findings can help to improve wind measurements.
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022, https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary
Short summary
Winds that are crucial to weather forecasting derived from two different techniques – tracking satellite images (AMVs) and direct measurement of molecular and aerosol motions by Doppler lidar (Aeolus satellite winds) – are compared. We find that AMVs and Aeolus winds are highly correlated. Aeolus Mie-cloudy winds have great potential value as a comparison standard for AMVs. Larger differences are found in the Southern Hemisphere related to higher wind speed and higher vertical variation in wind.
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022, https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary
Short summary
The remote sensing technique lidar is widely used for wind speed measurements for both industrial and academic applications. Lidars can measure wind statistics accurately but cannot fully capture turbulent fluctuations in the high-frequency range, since they are partly filtered out. This paper therefore investigates the turbulence spectrum measured by a continuous-wave lidar and analytically models the lidar's measured spectrum with a Lorentzian filter function and a white noise term.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
Short summary
During the VAL-OUC campaign, we established a coherent Doppler lidar (CDL) network over China to verify the Level 2B (L2B) products from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations, the L2B products from Aeolus are compared with those from CDLs. To our knowledge, the VAL-OUC campaign is the most extensive so far between CDLs and Aeolus in the lower troposphere for different atmospheric scenes. The vertical velocity impact on the HLOS retrieval from Aeolus is evaluated.
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech., 15, 21–39, https://doi.org/10.5194/amt-15-21-2022, https://doi.org/10.5194/amt-15-21-2022, 2022
Short summary
Short summary
The assimilation of GNSS data in weather models has a positive impact on the forecasts. The impact is still limited due to using only the GPS zenith direction parameters. We calculate and validate more advanced tropospheric products from three satellite systems: the US American GPS, Russian GLONASS and European Galileo. The quality of all the solutions is comparable; however, combining more GNSS systems enhances the observations' geometry and improves the quality of the weather forecasts.
Hironori Iwai, Makoto Aoki, Mitsuru Oshiro, and Shoken Ishii
Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021, https://doi.org/10.5194/amt-14-7255-2021, 2021
Short summary
Short summary
The first space-based Doppler wind lidar on board the Aeolus satellite was launched on 22 August 2018 to obtain global horizontal wind profiles. In this study, wind profilers, ground-based coherent Doppler wind lidars, and GPS radiosondes were used to validate the quality of Aeolus Level 2B wind products over Japan during three different periods. The results show that Aeolus can measure the horizontal winds over Japan accurately.
Tim A. van Kempen, Filippo Oggionni, and Richard M. van Hees
Atmos. Meas. Tech., 14, 6711–6722, https://doi.org/10.5194/amt-14-6711-2021, https://doi.org/10.5194/amt-14-6711-2021, 2021
Short summary
Short summary
Validation of the instrument stability of the TROPOMI-SWIR module is done by monitoring a group of very stable and remote locations in the Saharan and Arabian deserts. These results confirm the excellent stability and lack of degradation of the TROPOMI-SWIR module derived from the internal calibration sources. The method was done for the first time on a spectrometer in the short-wave infrared and ensures TROPOMI-SWIR can be used for atmospheric research for years to come.
Susanna Hagelin, Roohollah Azad, Magnus Lindskog, Harald Schyberg, and Heiner Körnich
Atmos. Meas. Tech., 14, 5925–5938, https://doi.org/10.5194/amt-14-5925-2021, https://doi.org/10.5194/amt-14-5925-2021, 2021
Short summary
Short summary
In this paper we study the impact of using wind observations from the Aeolus satellite, which provides wind speed profiles globally, in our numerical weather prediction system using a regional model covering the Nordic countries. The wind speed profiles from Aeolus are assimilated by the model, and we see that they have an impact on both the model analysis and forecast, though given the relatively few observations available the impact is often small.
Yuefei Zeng, Tijana Janjic, Yuxuan Feng, Ulrich Blahak, Alberto de Lozar, Elisabeth Bauernschubert, Klaus Stephan, and Jinzhong Min
Atmos. Meas. Tech., 14, 5735–5756, https://doi.org/10.5194/amt-14-5735-2021, https://doi.org/10.5194/amt-14-5735-2021, 2021
Short summary
Short summary
Observation errors (OEs) of radar measurements are correlated. The Desroziers method has been often used to estimate statistics of OE in data assimilation. However, the resulting statistics consist of contributions from different sources and are difficult to interpret. Here, we use an approach based on samples for truncation error to approximate the representation error due to unresolved scales and processes (RE) and compare its statistics with OE statistics estimated by the Desroziers method.
Evgenia Belova, Sheila Kirkwood, Peter Voelger, Sourav Chatterjee, Karathazhiyath Satheesan, Susanna Hagelin, Magnus Lindskog, and Heiner Körnich
Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, https://doi.org/10.5194/amt-14-5415-2021, 2021
Short summary
Short summary
Wind measurements from two radars (ESRAD in Arctic Sweden and MARA at the Indian Antarctic station Maitri) are compared with lidar winds from the ESA satellite Aeolus, for July–December 2019. The aim is to check if Aeolus data processing is adequate for the sunlit conditions of polar summer. Agreement is generally good with bias in Aeolus winds < 1 m/s in most circumstances. The exception is a large bias (7 m/s) when the satellite has crossed a sunlit Antarctic ice cap before passing MARA.
Ramashray Yadav, Ram Kumar Giri, and Virendra Singh
Atmos. Meas. Tech., 14, 4857–4877, https://doi.org/10.5194/amt-14-4857-2021, https://doi.org/10.5194/amt-14-4857-2021, 2021
Short summary
Short summary
We performed an intercomparison of seasonal and annual studies of retrievals of integrated precipitable water vapor (IPWV) carried out by INSAT-3DR satellite-borne infrared radiometer sounding and CAMS reanalysis data with ground-based Indian GNSS data. The magnitude and sign of the bias of INSAT-3DR and CAMS with respect to GNSS IPWV differs from station to station and season to season. A statistical evaluation of the collocated data sets was done to improve day-to-day weather forecasting.
Matic Šavli, Vivien Pourret, Christophe Payan, and Jean-François Mahfouf
Atmos. Meas. Tech., 14, 4721–4736, https://doi.org/10.5194/amt-14-4721-2021, https://doi.org/10.5194/amt-14-4721-2021, 2021
Short summary
Short summary
The ESA's Aeolus satellite wind retrieval is provided through a series of processors. It depends on the temperature and pressure specification, which, however, are not measured by the satellite. The numerical weather predicted values are used instead, but these are erroneous. This article studies the sensitivity of the wind retrieval by introducing errors in temperature and pressure. This has been found to be small for Aeolus but is expected to be more crucial for future missions.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021, https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825, https://doi.org/10.5194/amt-14-2813-2021, https://doi.org/10.5194/amt-14-2813-2021, 2021
Short summary
Short summary
We validate horizontal wind measurements at altitudes of 0.5–14 km made with atmospheric radars: ESRAD located near Kiruna in the Swedish Arctic and MARA at the Indian research station Maitri in Antarctica, by comparison with radiosondes, the regional model HARMONIE-AROME and the ECMWF ERA5 reanalysis. Good agreement was found in general, and radar bias and uncertainty were estimated. These radars are planned to be used for validation of winds measured by lidar by the ESA satellite Aeolus.
Gizachew Kabite Wedajo, Misgana Kebede Muleta, and Berhan Gessesse Awoke
Atmos. Meas. Tech., 14, 2299–2316, https://doi.org/10.5194/amt-14-2299-2021, https://doi.org/10.5194/amt-14-2299-2021, 2021
Short summary
Short summary
Satellite rainfall estimates (SREs) are alternative data sources for data-scarce basins. However, the accuracy of the products is plagued by multiple sources of errors. Therefore, SREs should be evaluated for particular basins before being used for other applications. The results of the study showed that CHIRPS2 and IMERG6 estimated rainfall and predicted hydrologic simulations well for Dhidhessa River Basin, which shows remote sensing technology could improve hydrologic studies.
Steven Knoop, Fred C. Bosveld, Marijn J. de Haij, and Arnoud Apituley
Atmos. Meas. Tech., 14, 2219–2235, https://doi.org/10.5194/amt-14-2219-2021, https://doi.org/10.5194/amt-14-2219-2021, 2021
Short summary
Short summary
Doppler wind lidars are laser-based remote sensing instruments that measure the wind up to a few hundred metres or even a few kilometres. Their data can improve weather models and help forecasters. To investigate their accuracy and required meteorological conditions, we have carried out a 2-year measurement campaign of a wind lidar at our Cabauw test site and made a comparison with cup anemometers and wind vanes at several levels in a 213 m tall meteorological mast.
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021, https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary
Short summary
Wind-tracking algorithms produce atmospheric motion vectors (AMVs) by tracking satellite observations. Accurately characterizing the uncertainties in AMVs is essential in assimilating them into data assimilation models. We develop a machine-learning-based approach for error characterization which involves Gaussian mixture model clustering and random forest using a simulation dataset of water vapor, AMVs, and true winds. We show that our method improves on existing AMV error characterizations.
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021, https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Short summary
This article presents a validation of 1.5 years of pure rotational temperature data measured by the Raman lidar RALMO installed at the MeteoSwiss station of Payerne. The statistical results are in terms of bias and standard deviation with respect to two well-established radiosounding systems. The statistics are divided into daytime (bias = 0.28 K, SD = 0.62±0.03 K) and nighttime (bias = 0.29 K, SD = 0.66±0.06 K). The lidar temperature profiles are applied to cloud supersaturation studies.
Anders Tegtmeier Pedersen and Michael Courtney
Atmos. Meas. Tech., 14, 889–903, https://doi.org/10.5194/amt-14-889-2021, https://doi.org/10.5194/amt-14-889-2021, 2021
Short summary
Short summary
This paper suggests and describes a method for calibrating wind lidars using a rotating flywheel. An uncertainty analysis shows that a standard uncertainty of 0.1 % can be achieved, with the main contributor being the width of the laser beam which is in agreement with experimental results. The method can potentially lower the calibration uncertainty of wind lidars, which today is often based on cup anemometers, and thus lead to better wind assessments and perhaps more widespread use.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Holger Baars, Alina Herzog, Birgit Heese, Kevin Ohneiser, Karsten Hanbuch, Julian Hofer, Zhenping Yin, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, https://doi.org/10.5194/amt-13-6007-2020, 2020
Short summary
Short summary
A first validation for the European satellite Aeolus is presented. Aeolus is the first satellite that can actively measure horizontal wind profiles from space.
Radiosonde launches on board the German research vessel Polarstern have been utilized to validate Aeolus observations over the Atlantic Ocean, a region where almost no other reference measurements are available. It is shown that Aeolus is able to measure accurately atmospheric winds and thus may significantly improve weather forecasts.
Giacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, and Federico Porcù
Atmos. Meas. Tech., 13, 5779–5797, https://doi.org/10.5194/amt-13-5779-2020, https://doi.org/10.5194/amt-13-5779-2020, 2020
Short summary
Short summary
The microwave signal travelling between two antennas of the commercial mobile backhaul network is strongly attenuated by rainfall. The open-source RAINLINK algorithm extracts rainfall rate maps, processing the attenuation data recorded by the transmission system. In this work, we applied RAINLINK to 357 Vodafone links in northern Italy and compared the outputs with the operational rain products of the local weather service (Arpae), outlining pros and cons and discussing error structure.
Clark J. Weaver, Pawan K. Bhartia, Dong L. Wu, Gordon J. Labow, and David E. Haffner
Atmos. Meas. Tech., 13, 5715–5723, https://doi.org/10.5194/amt-13-5715-2020, https://doi.org/10.5194/amt-13-5715-2020, 2020
Short summary
Short summary
Currently, we do not know whether clouds will accelerate or moderate climate. We look to the past and ask whether cloudiness has changed over the last 4 decades. Using a suite of nine satellite instruments, we need to ensure that the first satellite, which was launched in 1980 and died in 1991, observed the same measurement as the eight other satellite instruments used in the record. If the instruments were measuring length and observing a 1.00 m long stick, they would all see 0.99 to 1.01 m.
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020, https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Short summary
Long-term monitoring of satellite-derived variables is necessary for a better understanding of the evolution of Earth parameters at global scale. However different instruments' observations used over the years need to be inter-calibrated with each other to provide meaningful information. This paper describes how a linear correction can improve the observations from the Scanning Multichannel Microwave Radiometer over continental surfaces to be more consistent with more recent radiometers.
Zhilu Wu, Yanxiong Liu, Yang Liu, Jungang Wang, Xiufeng He, Wenxue Xu, Maorong Ge, and Harald Schuh
Atmos. Meas. Tech., 13, 4963–4972, https://doi.org/10.5194/amt-13-4963-2020, https://doi.org/10.5194/amt-13-4963-2020, 2020
Short summary
Short summary
The HY-2A calibration microwave radiometer (CMR) water vapor product is validated using ground-based GNSS observations along the coastline and shipborne GNSS observations over the Indian Ocean. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV, with 2.67 mm in rms within 100 km and an RMS of 1.57 mm with shipborne GNSS for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well.
Viswanathan Bringi, Kumar Vijay Mishra, Merhala Thurai, Patrick C. Kennedy, and Timothy H. Raupach
Atmos. Meas. Tech., 13, 4727–4750, https://doi.org/10.5194/amt-13-4727-2020, https://doi.org/10.5194/amt-13-4727-2020, 2020
Short summary
Short summary
The raindrop size distribution and its moments are fundamental in many areas, such as radar measurement of rainfall using polarimetry and numerical modeling of the microphysical processes of rain formation and evolution. We develop a technique which uses advanced radar measurements and complete drop size distributions using two collocated instruments to retrieve the lower-order moments such as total drop concentration and rain water content. We demonstrate a proof-of-concept using a case study.
Allan C. Just, Yang Liu, Meytar Sorek-Hamer, Johnathan Rush, Michael Dorman, Robert Chatfield, Yujie Wang, Alexei Lyapustin, and Itai Kloog
Atmos. Meas. Tech., 13, 4669–4681, https://doi.org/10.5194/amt-13-4669-2020, https://doi.org/10.5194/amt-13-4669-2020, 2020
Short summary
Short summary
A flexible machine-learning model was fit to explain the differences between estimates of water vapor from satellites versus ground stations in Northeastern USA. We use nine variables derived from the satellite acquisition and ground characteristics to explain this measurement error. Our results showed overall good agreement, but data from the Terra satellite were drifting too high in recent summers. Our model reduces measurement error and works well in new locations in the northeast.
Cited articles
Benedetti, A., Kaiser, J. W., and Morcrette, J.-J.: Global Climate, Aerosols in: State of the Climate in 2010, Bull. Am. Meteorol. Soc., 92, S65–S67, 2011.
Blanc, P., Gschwind, B., Lefevre, M., and Wald, L.: The HelioClim project: Surface solar irradiance data for climate applications, Remote Sens., 3, 343–361, https://doi.org/10.3390/rs3020343, 2011.
Elias, T. and Roujean, J.-L.: Estimation of the aerosol radiative forcing at ground level, over land, and in cloudless atmosphere, from METEOSAT-7 observation: method and case study, Atmos. Chem. Phys., 8, 625–636, https://doi.org/10.5194/acp-8-625-2008, 2008.
GCOS: Global Climate Observing System Essential Climate Variables, available at: www.wmo.int/pages/prog/gcos/index.php?name=EssentialClimateVariables, last access: 20 September 2013.
Geiger, M., Diabate, L., Menard, L., and Wald, L.: A web service for controlling the quality of measurements of global solar irradiation, Sol. Energy, 73, 475–480, https://doi.org/10.1016/S0038-092X(02)00121-4, 2002.
Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, 2013.
Kaiser, J. W., Peuch, V.-H., Benedetti, A., Boucher, O., Engelen, R. J., Holzer-Popp, T., Morcrette, J.-J., Wooster, M. J., and the MACC-II Management Board: The pre-operational GMES Atmospheric Service in MACC-II and its potential usage of Sentinel-3 observations, ESA Special Publication SP-708, Proceedings of the 3rd MERIS/(A)ATSR and OCLI-SLSTR (Sentinel-3) Preparatory Workshop, held in ESA-ESRIN, Frascati, Italy, 15–19 October 2012, 2012.
Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., Wald, L., Schroedter-Homscheidt, M., Hoyer-Klick, C., Arola, A., Benedetti, A., Kaiser, J. W., and Morcrette, J.-J.: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions, Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, 2013.
Lefevre, M., Blanc, P., Espinar, B., Gschwind, B., Menard, L., Ranchin, T., Wald, L., Saboret, L., Thomas, C., and Wey, E.: The HelioClim-1 database of daily solar radiation at Earth surface: an example of the benefits of GEOSS Data-CORE, IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 7, 1745–1753, https://doi.org/10.1109/JSTARS.2013.2283791, 2014.
Marie-Joseph, I., Linguet, L., Gobindass, M.-L., and Wald, L.: On the applicability of the Heliosat-2 method to assess surface solar irradiance in the Intertropical Convergence Zone, French Guiana, Int. J. Remote Sens., 34, 3012–3027, https://doi.org/10.1080/01431161.2012.756598, 2013.
Peuch, V.-H., Rouil, L., Tarrason, L., and Elbern, H.: Towards European-scale Air Quality operational services for GMES Atmosphere, 9th EMS Annual Meeting, EMS2009-511, 9th European Conference on Applications of Meteorology (ECAM) Abstracts, held 28 September–2 October 2009, Toulouse, France, EMS2009-511, 2009.
Remund, J., Wald, L., Lefevre, M., Ranchin, T., and Page, J.: Worldwide Linke turbidity information, In Proceedings of ISES Solar World Congress, 16–19 June 2003, Göteborg, Sweden, CD-ROM published by International Solar Energy Society, 2003.
Rigollier, C., Bauer, O., and Wald, L.: On the clear sky model of the 4th European Solar Radiation Atlas with respect to the Heliosat method, Sol. Energy, 68, 33–48, https://doi.org/10.1016/S0038-092X(99)00055-9, 2000.
Rigollier, C., Lefevre, M., and Wald, L.: The method Heliosat-2 for deriving shortwave solar radiation from satellite images, Sol. Energy, 77, 159-169, https://doi.org/10.1016/j.solener.2004.04.017, 2004.
Roesch, A., Wild, M., Ohmura, A., Dutton, E. G., Long, C. N., and Zhang, T.: Assessment of BSRN radiation records for the computation of monthly means, Atmos. Meas. Tech., 4, 339–354, https://doi.org/10.5194/amt-4-339-2011, 2011.
Schutgens, N. A. J. and Roebeling, R. A.: Validating the validation: The influence of liquid water distribution in clouds on the intercomparison of satellite and surface observations, J. Atmos. Ocean. Technol., 26, 1457–1474, https://doi.org/10.1175/2009JTECHA1226.1, 2009.
WMO: Guide to Meteorological Instruments and Methods of Observation, World Meteorological Organization, WMO-No 8, 7th Edn., Geneva, Switzerland, 2008.
Xu, J., Li, C., Shi, H., He, Q., and Pan, L.: Analysis on the impact of aerosol optical depth on surface solar radiation in the Shanghai megacity, China, Atmos. Chem. Phys., 11, 3281–3289, https://doi.org/10.5194/acp-11-3281-2011, 2011.
Short summary
The HelioClim-3 database (HC3v3) provides records of surface solar irradiation every 15 min estimated by processing images from the geostationary meteorological Meteosat satellites using climatological data sets of atmospheric properties. A method is proposed to improve a posteriori HC3v3 by combining it with data records of advanced global aerosol property forecasts and physically consistent total column content in water vapour and ozone produced by the MACC projects.
The HelioClim-3 database (HC3v3) provides records of surface solar irradiation every 15 min...