Articles | Volume 8, issue 2
https://doi.org/10.5194/amt-8-553-2015
https://doi.org/10.5194/amt-8-553-2015
Research article
 | 
03 Feb 2015
Research article |  | 03 Feb 2015

A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

M.-H. Ahn, D. Han, H. Y. Won, and V. Morris

Related authors

Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023,https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019,https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data
M.-H. Ahn, H. Y. Won, D. Han, Y.-H. Kim, and J.-C. Ha
Atmos. Meas. Tech., 9, 281–293, https://doi.org/10.5194/amt-9-281-2016,https://doi.org/10.5194/amt-9-281-2016, 2016
Short summary
Introduction of the in-orbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite
D. H. Kim and M. H. Ahn
Atmos. Meas. Tech., 7, 2471–2485, https://doi.org/10.5194/amt-7-2471-2014,https://doi.org/10.5194/amt-7-2471-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023,https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023,https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023,https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023,https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023,https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary

Cited articles

Berk, A., Anderson, G. P., Acharya, P. K., and Shettle, E. P.:, "MODTRAN\textsuperscript\textregistered 5.2.1 User's Manual", Spectral Sciences, INC., Burlington, MA, 69 pp., 2011.
Brocard, E., Schneebeli, M., and Matzlelr, C.: Detection of cirrus clouds using infrared radiometery, IEEE T. Geosci. Remote, 49, 595–602, 2011.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742, 1975.
Buck, A. L.: New equation for computing water vapour pressure and enhancement factor, J. Appl. Meteorol., 20, 1527–1532, 1981.
Cadeddu, M. P. and Turner, D. D.: Evaluation of water permittivity models from ground-based observations of cold clouds at frequencies between 23 and 170 GHz, IEEE T. Geosci. Remote, 49, 2999–3008, https://doi.org/10.1109/TGRS.2011.2121074, 2011.
Download
Short summary
A new cloud detection algorithm using the downwelling IR radiation has been developed by utilizing the spectral and temporal characteristics of clouds which significantly increase the measured radiance and temporal variability. Algorithm performance is evaluated by collocated ceilometer data showing the proportion of correct and probability of detection values of 88.3% and 90.8%, respectively. The algorithm is found to be insensitive to the presence of the inversion layer.