Articles | Volume 9, issue 10
https://doi.org/10.5194/amt-9-5249-2016
https://doi.org/10.5194/amt-9-5249-2016
Research article
 | 
28 Oct 2016
Research article |  | 28 Oct 2016

Assessing the performance of troposphere tomographic modeling using multi-source water vapor data during Hong Kong's rainy season from May to October 2013

Biyan Chen and Zhizhao Liu

Related authors

Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting
Biyan Chen, Wujiao Dai, Zhizhao Liu, Lixin Wu, Cuilin Kuang, and Minsi Ao
Atmos. Meas. Tech., 11, 5153–5166, https://doi.org/10.5194/amt-11-5153-2018,https://doi.org/10.5194/amt-11-5153-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024,https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024,https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024,https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Accounting for the effect of aerosols in GHGSat methane retrieval
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024,https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Diego Loyola, Hanlim Lee, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-1137,https://doi.org/10.5194/egusphere-2024-1137, 2024
Short summary

Cited articles

Beckman, B.: A water-vapor radiometer error model, IEEE T. Geosci. Remote, GE-23, 474–478, 1985.
Bender, M. and Raabe, A.: Preconditions to ground based GPS water vapour tomography, Ann. Geophys., 25, 1727–1734, https://doi.org/10.5194/angeo-25-1727-2007, 2007.
Bender, M., Dick, G., Wickert, J., Ramatschi, M., Ge, M., Gendt, G., Rothacher, M., Raabe, A., and Tetzlaff, G.: Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications, J. Geophys. Res., 114, D06303, https://doi.org/10.1029/2008JD011008, 2009.
Bender, M., Dick, G., Ge, M., Deng, Z., Wickert, J., Kahle, H.-G., Raabe, A., and Tetzlaff, G.: Development of a GNSS water vapour tomography system using algebraic reconstruction techniques, Adv. Space Res., 47, 1704–1720, https://doi.org/10.1016/j.asr.2010.05.034, 2011.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res.-Atmos., 97, 15787–15801, 1992.
Download
Short summary
A multi-source water vapor tomography model is developed using GPS (Global Positioning System), radiosonde, WVR (water vapor radiometer), NWP (numerical weather prediction), AERONET (AErosol RObotic NETwork) sunphotometer and synoptic stations' data. Results show that the assimilation of multi-source data can increase the quality of the tomographic solution. Evaluation shows that the tomography model is robust during heavy rain conditions, and it can contribute to severe weather forecasting.