Articles | Volume 11, issue 10
https://doi.org/10.5194/amt-11-5797-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-5797-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications
Yueqiang Sun
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
School of Astronomy and Space Science, University of Chinese Academy of
Sciences, Beijing, China
Weihua Bai
CORRESPONDING AUTHOR
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
School of Astronomy and Space Science, University of Chinese Academy of
Sciences, Beijing, China
Congliang Liu
CORRESPONDING AUTHOR
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Yan Liu
National Meteorological Center, Chinese Meteorological Administration,
Beijing, China
Qifei Du
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
School of Astronomy and Space Science, University of Chinese Academy of
Sciences, Beijing, China
Xianyi Wang
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Guanglin Yang
National Satellite Meteorological Center, Chinese Meteorological
Administration, Beijing, China
Mi Liao
National Satellite Meteorological Center, Chinese Meteorological
Administration, Beijing, China
Zhongdong Yang
National Satellite Meteorological Center, Chinese Meteorological
Administration, Beijing, China
Xiaoxin Zhang
National Satellite Meteorological Center, Chinese Meteorological
Administration, Beijing, China
Xiangguang Meng
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Danyang Zhao
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Junming Xia
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Yuerong Cai
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Gottfried Kirchengast
Wegener Center for Climate and Global Change (WEGC) and Institute for
Geophysics, Astrophysics, and Meteorology/Institute of Physics, University
of Graz, Graz, Austria
Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, China, and University of Graz, Graz, Austria
Beijing Key Laboratory of Space Environment Exploration, National Space
Science Center, Chinese Academy of Sciences (NSSC/CAS), Beijing, China
Related authors
Ziyan Liu, Weihua Bai, Yueqiang Sun, Junming Xia, Guangyuan Tan, Cheng Cheng, Qifei Du, Xianyi Wang, Danyang Zhao, Yusen Tian, Xiangguang Meng, Congliang Liu, Yuerong Cai, and Dongwei Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-379, https://doi.org/10.5194/amt-2019-379, 2019
Revised manuscript not accepted
Short summary
Short summary
This papr mainly gives the results, comparison and bias analysis about thermal tropopause height calculated by two mainstream determination method in terms of different latitude locations and seasons. The tropopause height results in this paper are derived from the data of two RO missions, China's FengYun-3 and Europe's MetOp. For lapse rate tropopause, MetOp and FY3C show defference over subtropics. The difference between bending angle tropopause and lapse rate tropopause varies with seasons.
Weihua Bai, Guojun Wang, Yueqiang Sun, Jiankui Shi, Guanglin Yang, Xiangguang Meng, Dongwei Wang, Qifei Du, Xianyi Wang, Junming Xia, Yuerong Cai, Congliang Liu, Wei Li, Chunjun Wu, Danyang Zhao, Di Wu, and Cheng Liu
Atmos. Meas. Tech., 12, 1483–1493, https://doi.org/10.5194/amt-12-1483-2019, https://doi.org/10.5194/amt-12-1483-2019, 2019
Short summary
Short summary
This study reports on the application of the FY3-C GNSS occultation sounder (GNOS) for assessing the global ionospheric response to magnetic storm events. We use the March 2015 magnetic storm event to demonstrate the reliability of NmF2 data derived from the instrument through comparisons with ground-based ionosonde observations. The analysis demonstrates the reliability of the GNSS radio occultation sounding instrument GNOS aboard the FY3-C satellite and validates its ionosphere products.
Congliang Liu, Gottfried Kirchengast, Yueqiang Sun, Kefei Zhang, Robert Norman, Marc Schwaerz, Weihua Bai, Qifei Du, and Ying Li
Atmos. Meas. Tech., 11, 2427–2440, https://doi.org/10.5194/amt-11-2427-2018, https://doi.org/10.5194/amt-11-2427-2018, 2018
Short summary
Short summary
In this study, we focused on investigating the causes of the higher-order residual ionospheric error (RIE) in the GNSS RO events, by employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects, where asymmetric ionospheric conditions play the primary role.
Weihua Bai, Congliang Liu, Xiangguang Meng, Yueqiang Sun, Gottfried Kirchengast, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Zhongdong Yang, Danyang Zhao, Junming Xia, Yuerong Cai, Lijun Liu, and Dongwei Wang
Atmos. Meas. Tech., 11, 819–833, https://doi.org/10.5194/amt-11-819-2018, https://doi.org/10.5194/amt-11-819-2018, 2018
Short summary
Short summary
In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing. From the statistics, average bias (and standard deviation) of the bending angle and refractivity profiles were found to be as small as about 0.05–0.2 % (and 0.7–1.6 %) over the upper troposphere and lower stratosphere, including for the GEO, IGSO, and MEO subsets. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise.
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024, https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Short summary
We investigated the potential of radio occultation (RO) data for climate-oriented wind field monitoring, focusing on the equatorial band within ±5° latitude. In this region, the geostrophic balance breaks down, and the equatorial balance approximation takes over. The study encourages the use of RO wind fields for mesoscale climate monitoring for the equatorial region, showing a small improvement in the troposphere when including the meridional wind in the zonal-mean total wind speed.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-59, https://doi.org/10.5194/amt-2024-59, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Due to shortcomings of available observations, having accurate global 3D wind fields remains a challenge. Promising option is the use of radio occultation (RO) satellite data, which enable to derive winds based on the wind approximations. We test how well RO winds describe the ERA5 reanalysis winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ying Li, Gottfried Kirchengast, Marc Schwaerz, and Yunbin Yuan
Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, https://doi.org/10.5194/acp-23-1259-2023, 2023
Short summary
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021, https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Short summary
High-quality observations are critically important for monitoring the Earth’s changing climate. We provide information on the consistency and long-term stability of observations from GPS radio occultation (RO). We assess, for the first time, RO records from multiple RO missions and all major RO data providers. Our results quantify where RO can be used for reliable trend assessment and confirm its climate quality.
Ziyan Liu, Weihua Bai, Yueqiang Sun, Junming Xia, Guangyuan Tan, Cheng Cheng, Qifei Du, Xianyi Wang, Danyang Zhao, Yusen Tian, Xiangguang Meng, Congliang Liu, Yuerong Cai, and Dongwei Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-379, https://doi.org/10.5194/amt-2019-379, 2019
Revised manuscript not accepted
Short summary
Short summary
This papr mainly gives the results, comparison and bias analysis about thermal tropopause height calculated by two mainstream determination method in terms of different latitude locations and seasons. The tropopause height results in this paper are derived from the data of two RO missions, China's FengYun-3 and Europe's MetOp. For lapse rate tropopause, MetOp and FY3C show defference over subtropics. The difference between bending angle tropopause and lapse rate tropopause varies with seasons.
Christoph Schlager, Gottfried Kirchengast, Juergen Fuchsberger, Alexander Kann, and Heimo Truhetz
Geosci. Model Dev., 12, 2855–2873, https://doi.org/10.5194/gmd-12-2855-2019, https://doi.org/10.5194/gmd-12-2855-2019, 2019
Short summary
Short summary
Empirical high-resolution surface wind fields from two study areas, automatically generated by a weather diagnostic application, were intercompared with wind fields of different modeling approaches. The focus is on evaluating spatial differences and displacements between the different datasets. In general, the spatial verification indicates a better statistical agreement for the first study area (hilly WegenerNet Feldbach Region), than for the second one (mountainous WegenerNet Johnsbachtal).
Weihua Bai, Guojun Wang, Yueqiang Sun, Jiankui Shi, Guanglin Yang, Xiangguang Meng, Dongwei Wang, Qifei Du, Xianyi Wang, Junming Xia, Yuerong Cai, Congliang Liu, Wei Li, Chunjun Wu, Danyang Zhao, Di Wu, and Cheng Liu
Atmos. Meas. Tech., 12, 1483–1493, https://doi.org/10.5194/amt-12-1483-2019, https://doi.org/10.5194/amt-12-1483-2019, 2019
Short summary
Short summary
This study reports on the application of the FY3-C GNSS occultation sounder (GNOS) for assessing the global ionospheric response to magnetic storm events. We use the March 2015 magnetic storm event to demonstrate the reliability of NmF2 data derived from the instrument through comparisons with ground-based ionosonde observations. The analysis demonstrates the reliability of the GNSS radio occultation sounding instrument GNOS aboard the FY3-C satellite and validates its ionosphere products.
Christoph Schlager, Gottfried Kirchengast, and Juergen Fuchsberger
Atmos. Meas. Tech., 11, 5607–5627, https://doi.org/10.5194/amt-11-5607-2018, https://doi.org/10.5194/amt-11-5607-2018, 2018
Short summary
Short summary
In this work we further developed and evaluated an operational weather diagnostic application, the WegenerNet Wind Product Generator (WPG), and applied it to the WegenerNet Johnsbachtal (JBT), a dense meteorological station network located in a mountainous Alpine region. The WPG automatically generates gridded high-resolution wind fields in near-real time with a temporal resolution of 30 min and a spatial resolution of 100 m x 100 m.
Congliang Liu, Gottfried Kirchengast, Yueqiang Sun, Kefei Zhang, Robert Norman, Marc Schwaerz, Weihua Bai, Qifei Du, and Ying Li
Atmos. Meas. Tech., 11, 2427–2440, https://doi.org/10.5194/amt-11-2427-2018, https://doi.org/10.5194/amt-11-2427-2018, 2018
Short summary
Short summary
In this study, we focused on investigating the causes of the higher-order residual ionospheric error (RIE) in the GNSS RO events, by employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects, where asymmetric ionospheric conditions play the primary role.
Weihua Bai, Congliang Liu, Xiangguang Meng, Yueqiang Sun, Gottfried Kirchengast, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Zhongdong Yang, Danyang Zhao, Junming Xia, Yuerong Cai, Lijun Liu, and Dongwei Wang
Atmos. Meas. Tech., 11, 819–833, https://doi.org/10.5194/amt-11-819-2018, https://doi.org/10.5194/amt-11-819-2018, 2018
Short summary
Short summary
In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing. From the statistics, average bias (and standard deviation) of the bending angle and refractivity profiles were found to be as small as about 0.05–0.2 % (and 0.7–1.6 %) over the upper troposphere and lower stratosphere, including for the GEO, IGSO, and MEO subsets. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise.
Michael E. Gorbunov and Gottfried Kirchengast
Atmos. Meas. Tech., 11, 111–125, https://doi.org/10.5194/amt-11-111-2018, https://doi.org/10.5194/amt-11-111-2018, 2018
Short summary
Short summary
We study the systematic discreapancies between atmospheric refractivity derived from radio occulation (RO) sounding of the Earth's atmosphere and the reanalyses of the European Centre for Medium-Range Weather Forecasts. We construct a regression-based bias model. The model can be used for the RO data propagation in the new reference occultation processing system (rOPS) including the uncertainty propagation through the retrieval chain.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
Barbara Angerer, Florian Ladstädter, Barbara Scherllin-Pirscher, Marc Schwärz, Andrea K. Steiner, Ulrich Foelsche, and Gottfried Kirchengast
Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, https://doi.org/10.5194/amt-10-4845-2017, 2017
Short summary
Short summary
We present a detailed analysis of the latest Wegener Center GPS radio occultation reprocessing (OPSv5.6) output. Knowledge of differences in data quality, as well as of data consistency, is essential when combining data from different missions to a long-term climate record. We compare quality aspects of the various processed satellite missions and present satellite-dependent variations. Temperature data from various satellites are found to be highly consistent within 8 to 25 km.
Mi Liao, Peng Zhang, Guang-Lin Yang, Yan-Meng Bi, Yan Liu, Wei-Hua Bai, Xiang-Guang Meng, Qi-Fei Du, and Yue-Qiang Sun
Atmos. Meas. Tech., 9, 781–792, https://doi.org/10.5194/amt-9-781-2016, https://doi.org/10.5194/amt-9-781-2016, 2016
Short summary
Short summary
This paper provides a preliminary validation for the refractivity of GNOS, a new addition to the space-based radio occultation sounder on FY-3C. It possesses a similar sounding capability that COSMIC and GRAS did in the vertical range of 0-30 km, with a precision below 1 %.
Riccardo Biondi, Andrea Steiner, Gottfried Kirchengast, Hugues Brenot, and Therese Rieckh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-974, https://doi.org/10.5194/acp-2015-974, 2016
Revised manuscript not accepted
Short summary
Short summary
Cloud structure and cloud top height are key parameters for the monitoring of volcanic cloud movement and for characterizing eruptive processes and understanding the impact on short-term climate variability.
We have studied the eruption of Nabro volcano, which has been recognized as the largest stratospheric sulfur injection since Pinatubo (1991) and we have found a clear warming signature after the eruption of Nabro persisting for a few months.
Y. Li, G. Kirchengast, B. Scherllin-Pirscher, R. Norman, Y. B. Yuan, J. Fritzer, M. Schwaerz, and K. Zhang
Atmos. Meas. Tech., 8, 3447–3465, https://doi.org/10.5194/amt-8-3447-2015, https://doi.org/10.5194/amt-8-3447-2015, 2015
Short summary
Short summary
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System-based radio occultation measurements. The new algorithm is evaluated against the OPSv5.6 algorithm developed by the Wegener Center using both simulated and real observed data. It is found that the algorithm can significantly reduce the random errors of optimized bending angles. The retrieved refractivity and temperature profiles are also benefited.
V. Proschek, G. Kirchengast, S. Schweitzer, J. S. A. Brooke, P. F. Bernath, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher
Atmos. Meas. Tech., 8, 3315–3336, https://doi.org/10.5194/amt-8-3315-2015, https://doi.org/10.5194/amt-8-3315-2015, 2015
C. L. Liu, G. Kirchengast, K. Zhang, R. Norman, Y. Li, S. C. Zhang, J. Fritzer, M. Schwaerz, S. Q. Wu, and Z. X. Tan
Atmos. Meas. Tech., 8, 2999–3019, https://doi.org/10.5194/amt-8-2999-2015, https://doi.org/10.5194/amt-8-2999-2015, 2015
A. Plach, V. Proschek, and G. Kirchengast
Atmos. Meas. Tech., 8, 2813–2825, https://doi.org/10.5194/amt-8-2813-2015, https://doi.org/10.5194/amt-8-2813-2015, 2015
Short summary
Short summary
This paper discusses simulation results of a newly developed line-of-sight wind retrieval algorithm expanding an existing simulation framework that includes the retrieval of thermodynamic variables and greenhouse gases in the upper troposphere/lower stratosphere region. The underlying mission concept further develops the radio occultation technique (i.e. satellite remote sensing technique scanning the atmosphere with high vertical resolution) employing microwave and infrared-laser signals.
R. Biondi, A. K. Steiner, G. Kirchengast, and T. Rieckh
Atmos. Chem. Phys., 15, 5181–5193, https://doi.org/10.5194/acp-15-5181-2015, https://doi.org/10.5194/acp-15-5181-2015, 2015
F. Ladstädter, A. K. Steiner, M. Schwärz, and G. Kirchengast
Atmos. Meas. Tech., 8, 1819–1834, https://doi.org/10.5194/amt-8-1819-2015, https://doi.org/10.5194/amt-8-1819-2015, 2015
A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, and B. Bica
Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, https://doi.org/10.5194/hess-19-1547-2015, 2015
Short summary
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
W. H. Bai, Y. Q. Sun, Q. F. Du, G. L. Yang, Z. D. Yang, P. Zhang, Y. M. Bi, X. Y. Wang, C. Cheng, and Y. Han
Atmos. Meas. Tech., 7, 1817–1823, https://doi.org/10.5194/amt-7-1817-2014, https://doi.org/10.5194/amt-7-1817-2014, 2014
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The GRAS-2 radio occultation mission
The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Quantitative Error Analysis on Polarimetric Phased Array Radar Weather Measurements to Reveal Radar Performance and Configuration Potential
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Optimization of a direct detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Advancing airborne Doppler lidar wind profiling in turbulent boundary layer flow – an LES-based optimization of traditional scanning-beam versus novel fixed-beam measurement systems
Observing atmospheric convection with dual-scanning lidars
Evaluation of error components in rainfall retrieval from collocated commercial microwave links
In-orbit cross-calibration of millimeter conically scanning spaceborne radars
The Far-Infrared Radiation Mobile Observation System (FIRMOS) for spectral characterization of the atmospheric emission
Calibrating radar wind profiler reflectivity factor using surface disdrometer observations
Pseudorandom modulation continuous-wave narrowband sodium temperature and wind lidar
Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Evaluation of the New York State Mesonet Profiler Network data
Quantification of motion-induced measurement error on floating lidar systems
Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations
Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign
Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations
Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Moderate spectral resolution solar irradiance measurements, aerosol optical depth, and solar transmission, from 360 to 1070 nm, using the refurbished rotating shadow band spectroradiometer (RSS)
Mitigation of bias sources for atmospheric temperature and humidity in the mobile Raman Weather and Aerosol Lidar (WALI)
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
ALADIN laser frequency stability and its impact on the Aeolus wind error
A compact static birefringent interferometer for the measurement of upper atmospheric winds: concept, design and lab performance
The COTUR project: remote sensing of offshore turbulence for wind energy application
Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite
Relationship between wind observation accuracy and the ascending node of the sun-synchronous orbit for the Aeolus-type spaceborne Doppler wind lidar
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Measurement characteristics of an airborne microwave temperature profiler (MTP)
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
Atmospheric observations with E-band microwave links – challenges and opportunities
Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers
Wuhan MST radar: technical features and validation of wind observations
Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX)
First observations of the McMurdo–South Pole oblique ionospheric HF channel
Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024, https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
Short summary
Soon the MetOp Second Generation (Metop-SG) series of polar orbiting meteorological satellites will be launched. On these satellites, the GRAS-2 instrument will be mounted. It will provide GNSS radio occultation measurements with unsurpassed accuracy. The occultation measurements are used routinely for numerical weather prognosis, i.e. predicting the weather. In this paper, we describe the design of this new instrument and the novel methods developed to process the data.
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024, https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Short summary
This article describes the current status of a lidar installed at ALOMAR in northern Norway. It has investigated the Arctic middle atmosphere on a climatological basis for 30 years. We discuss major upgrades of the system implemented during recent years, including methods for reliable remote operation of this complex lidar. We also show examples that illustrate the performance of the lidar during measurements at different altitude ranges and timescales.
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024, https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Short summary
The Far INfrarEd Spectrometer for Surface Emissivity, FINESSE, is designed to measure the ability of natural surfaces to emit infrared radiation. FINESSE combines a commercial instrument with custom-built optics to view a surface from different angles with complementary views of the sky. Its choice of internal components means it can cover a wide range of wavelengths, extending into the far-infrared. We characterize FINESSE’s uncertainty budget and provide examples of its measurement capability.
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024, https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Short summary
Weather radars should use lightning protection to be safe from damage, but the rods can reduce the quality of the radar measurements. This study presents three new solutions for lightning protection for weather radars and evaluates their influence on data quality. The results are compared to the current system. All tested ones have very little effect on data, and a new lightning protection system with four rods is recommended for the German Meteorological Service.
Junho Ho, Zhe Li, and Guifu Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-118, https://doi.org/10.5194/amt-2024-118, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study quantitatively analyzes and compares weather measurements from planar (PPPAR) and cylindrical polarimetric phased array radars (CPPAR). It examines data quality, potential problems, and clarifies misunderstandings between the configurations. The findings highlight 2D PPPAR’s challenges in making accurate weather measurements when the beam steers off broadside. CPPAR shows promise in obtaining high-quality polarimetric data because of its azimuthal scan invariant beam characteristics.
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024, https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
Short summary
In this paper, the relationship between observations from two instruments, a meteor radar and a field-widened Michelson interferometer (ERWIN) which provide complementary information on this region, is investigated. On average the ratio of ERWIN winds to meteor radar winds is ∼ 0.7. Differences between the wind observations may be caused by variations in the airglow brightness associated with dissipating gravity waves.
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024, https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
Short summary
To have better understanding of the dynamics of the lower and middle atmosphere, we installed a newly designed dual-frequency radar system that uses 53.8 MHz for near-ground to 20 km wind measurements and 35.0 MHz for 70 to 100 km wind measurements. The initial results show its good performance, along with the analysis of typical winter gravity wave activities.
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024, https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024, https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary
Short summary
Improving the monitoring capability of atmospheric turbulence can help unravel the mystery of turbulence. Based on some assumptions, scientists have proposed various detection methods. However, these assumptions limit their applicability. We abandoned these assumptions and proposed a more accurate method, revealing some new results. Our method can provide more accurate three-dimensional features of turbulence, which will have a huge driving effect on the development of turbulence.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024, https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Short summary
A novel infrared imaging instrument (OH imager) was put into operation in November 2022 at the Swedish Institute of Space Physics in Kiruna (Sweden). The OH imager is dedicated to the study of nightglow emissions coming from the hydroxyl (OH) and molecular oxygen (O2) layers in the mesopause (80–100 km). Based on a brightness ratio of two OH emission lines, the neutral temperature is estimated at around 87 km. The average daily winter temperature for the period January–April 2023 is 203±10 K.
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-41, https://doi.org/10.5194/amt-2024-41, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper presents a design of a UV wind lidar, made with a UV fiber laser and a Quadri Mach-Zehnder interferometer as a spectral analyzer, used to measure the wind in front of future low consumption aircraft. The article details the optimization of the different elements of the instrument with simulations. This paper also presents a method to optimize laser angles for determining wind direction and strength, and shows a 50 % improvement over the current angles used.
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024, https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Short summary
We present a radiance calibration method based on the comparison of measurements and radiative transfer simulations of the zenith-scattered sun radiance during twilight. Cloud-free conditions are required. The method can be applied to measurements in the filed, and no laboratory measurements are required. The accuracy is estimated to range from about 4 % at 340 nm to about 10 % at 700 nm.
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Philipp Gasch, James Kasic, Oliver Maas, and Zhien Wang
Atmos. Meas. Tech., 16, 5495–5523, https://doi.org/10.5194/amt-16-5495-2023, https://doi.org/10.5194/amt-16-5495-2023, 2023
Short summary
Short summary
This paper rethinks airborne wind measurements and investigates a new design for airborne Doppler lidar systems. Recent advances in lidar technology allow the use of multiple lidar systems with fixed viewing directions instead of a single lidar attached to a scanner. Our simulation results show that the proposed new design offers great potential for both higher accuracy and higher-resolution airborne wind measurements.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Anna Špačková, Martin Fencl, and Vojtěch Bareš
Atmos. Meas. Tech., 16, 3865–3879, https://doi.org/10.5194/amt-16-3865-2023, https://doi.org/10.5194/amt-16-3865-2023, 2023
Short summary
Short summary
Commercial microwave links as rainfall sensors have been investigated and evaluated in numerous studies with gauge-adjusted radar used for reference for rainfall observations. We evaluate collocated commercial microwave links, which are thus exposed to identical atmospheric conditions. This set-up enables the exploration of inconsistencies in observations of independent sensors using data from a real telecommunication network. The sensors are in agreement and are homogeneous in their behaviour.
Alessandro Battaglia, Filippo Emilio Scarsi, Kamil Mroz, and Anthony Illingworth
Atmos. Meas. Tech., 16, 3283–3297, https://doi.org/10.5194/amt-16-3283-2023, https://doi.org/10.5194/amt-16-3283-2023, 2023
Short summary
Short summary
Some of the new generation of cloud and precipitation spaceborne radars will adopt conical scanning. This will make some of the standard calibration techniques impractical. This work presents a methodology to cross-calibrate radars in orbits by matching the reflectivity probability density function of ice clouds observed by the to-be-calibrated and by the reference radar in quasi-coincident locations. Results show that cross-calibration within 1 dB (26 %) is feasible.
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023, https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Short summary
We successfully developed the first pseudorandom modulation continuous-wave narrowband sodium lidar (PMCW-NSL) system for simultaneous measurements of the mesopause region's temperature and wind. Based on the innovative decoded technique and algorithm for CW lidar, both the main and residual lights modulated by M-code are used and directed to the atmosphere in the vertical and eastward directions, tilted 20° from the zenith. The PMCW-NSL system can applied to airborne and space-borne purposes.
Dana L. McGuffin, Philip J. Cameron-Smith, Matthew A. Horsley, Brian J. Bauman, Wim De Vries, Denis Healy, Alex Pertica, Chris Shaffer, and Lance M. Simms
Atmos. Meas. Tech., 16, 2129–2144, https://doi.org/10.5194/amt-16-2129-2023, https://doi.org/10.5194/amt-16-2129-2023, 2023
Short summary
Short summary
This work demonstrates the viability of a remote sensing technique using nanosatellites to measure stratospheric temperature. This measurement technique can probe the stratosphere and mesosphere at a fine vertical scale around the globe unlike other high-altitude measurement techniques, which would provide an opportunity to observe atmospheric gravity waves and turbulence. We analyze observations from two satellite platforms to provide a proof of concept and characterize measurement uncertainty.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023, https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Short summary
Global Navigation Satellite System (GNSS) radio occultation (RO) remote sensing is effective for atmospheric profiling. The capability of a low-cost and scalable commercial off-the-shelf (COTS) GNSS receiver on board high-altitude balloons is tested in two campaigns. Preliminary results demonstrate high-quality refractivity observations from the COTS RO receiver, which is worth further improvement for dense atmospheric observations over a targeted region.
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Short summary
Doppler lidars and weather radars provide accurate wind measurements, with Doppler lidar usually performing better in dry weather conditions and weather radar performing better when there is precipitation. Operating both instruments together should therefore improve the overall performance. We investigate how well a co-located Doppler lidar and X-band radar perform with respect to various weather conditions, including changes in horizontal visibility, cloud altitude, and precipitation.
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022, https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Short summary
The NYS Mesonet Profiler Network is comprised of 17 profiler sites, each equipped with a Doppler lidar, microwave radiometer, and sun photometer. This study presents a multi-year, multi-station evaluation based on well-defined reference measurements. Results demonstrate robust technologies that can aid real-time weather operations and a network test bed that can be used for further expansion, evaluation, and integration of such technologies at a large scale.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Alessandro Battaglia, Paolo Martire, Eric Caubet, Laurent Phalippou, Fabrizio Stesina, Pavlos Kollias, and Anthony Illingworth
Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022, https://doi.org/10.5194/amt-15-3011-2022, 2022
Short summary
Short summary
We present an instrument simulator for a new sensor, WIVERN (WInd VElocity Radar Nephoscope), a conically scanning radar payload with Doppler capabilities, recently down-selected as one of the four candidates for the European Space Agency Earth Explorer 11 program. The mission aims at measuring horizontal winds in cloudy areas. The simulator is instrumental in the definition and consolidation of the mission requirements and the evaluation of mission performances.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Vicki Kelsey, Spencer Riley, and Kenneth Minschwaner
Atmos. Meas. Tech., 15, 1563–1576, https://doi.org/10.5194/amt-15-1563-2022, https://doi.org/10.5194/amt-15-1563-2022, 2022
Short summary
Short summary
In the interior western USA there are distances of hundreds of kilometers between weather balloon launch sites for weather forecasting. Satellite coverage can also be sparse or with poor resolution. Using infrared thermometers, clear-sky temperatures were collected and compared with data from weather balloons. A correlation between clear-sky temperatures and precipitable water measurements from weather balloons was found. This means that citizen scientists can collect data.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Joseph J. Michalsky and Peter W. Kiedron
Atmos. Meas. Tech., 15, 353–364, https://doi.org/10.5194/amt-15-353-2022, https://doi.org/10.5194/amt-15-353-2022, 2022
Short summary
Short summary
This paper describes an instrument that measures spectrally from 360 nm (ultraviolet) to 1070 nm (near-infrared) at 1002 separate wavelengths. The measurements were made every minute from the late summer of 2009 to the winter of 2014 at a site in northern Oklahoma (USA; 36.605° N, 97.486° W). Methods are described that enable the normalized transmission across the spectrum to be measured and, subsequently, used to calculate the aerosol optical depth and spectra irradiance.
Julien Totems, Patrick Chazette, and Alexandre Baron
Atmos. Meas. Tech., 14, 7525–7544, https://doi.org/10.5194/amt-14-7525-2021, https://doi.org/10.5194/amt-14-7525-2021, 2021
Short summary
Short summary
We describe in detail the design and calibration of the new Raman channels for the WALI system, going over the important sources of bias and uncertainty on retrieved temperature profiles. For the first time, their impact is investigated using horizontal shots in a homogenous atmosphere: the magnitude of the highlighted biases can be much larger than the targeted absolute accuracy of 1° C. Actual measurement errors are quantified using radiosoundings launched close to the lidar site.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Tingyu Yan, Jeffery A. Langille, William E. Ward, William A. Gault, Alan Scott, Andrew Bell, Driss Touahiri, Sheng-Hai Zheng, and Chunmin Zhang
Atmos. Meas. Tech., 14, 6213–6232, https://doi.org/10.5194/amt-14-6213-2021, https://doi.org/10.5194/amt-14-6213-2021, 2021
Short summary
Short summary
High-resolution interferometers are routinely used to measure upper atmospheric motions by measuring small Doppler shifts in spectrally isolated airglow emissions. The birefringent interferometer presented in this paper has similar capabilities as several existing state-of-the-art instruments but is smaller and less complex to construct and operate. This paper presents the measurement technique and characterization of a lab prototype and examines the performance of the instrument.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
Chuanliang Zhang, Xuejin Sun, Wen Lu, Yingni Shi, Naiying Dou, and Shaohui Li
Atmos. Meas. Tech., 14, 4787–4803, https://doi.org/10.5194/amt-14-4787-2021, https://doi.org/10.5194/amt-14-4787-2021, 2021
Short summary
Short summary
The first spaceborne doppler wind lidar (DWL) Aeolus operates on sun-synchronous dawn–dusk orbit to lower the impact of solar background radiation (SBR) on wind observation accuracy. Increased SBR leads to an increment of averaged wind observation uncertainties from 0.19 to 0.27 m s-1 comparing Aeolus and two added spaceborne DWLs operating on orbits with local ascending times of 15:00 and 12:00 LT. A quantitative design of laser pulse energy according to accuracy requirements is also proposed.
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021, https://doi.org/10.5194/amt-14-1689-2021, 2021
William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm
Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021, https://doi.org/10.5194/amt-14-1303-2021, 2021
Short summary
Short summary
We developed a wind-measuring drone with exceptional measuring accuracy and a very long flight time. Measurements are extensively validated at different levels. A comparison with a bistatic lidar reveals very small bias and RMSEs. We also present a demonstration measurement in the wake of a wind turbine. We think that our solution is a significant enhancement to existing designs, and other researchers can benefit from the details that we are giving in the paper.
Martin Fencl, Michal Dohnal, Pavel Valtr, Martin Grabner, and Vojtěch Bareš
Atmos. Meas. Tech., 13, 6559–6578, https://doi.org/10.5194/amt-13-6559-2020, https://doi.org/10.5194/amt-13-6559-2020, 2020
Short summary
Short summary
Commercial microwave links operating at E-band frequencies are increasingly being updated and are frequently replacing older infrastructure. We show that E-band microwave links are able to observe even light rainfalls, a feat practically impossible to achieve by older 15–40 GHz devices. Furthermore, water vapor retrieval may be possible from long E-band microwave links, although the efficient separation of gaseous attenuation from other signal losses will be challenging in practice.
Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang
Atmos. Meas. Tech., 13, 6521–6542, https://doi.org/10.5194/amt-13-6521-2020, https://doi.org/10.5194/amt-13-6521-2020, 2020
Short summary
Short summary
The hydroxyl radical (OH) plays a significant role in atmospheric chemical and physical reactions. The superiority and feasibility of a new satellite sensor, which consists of two spatial heterodyne spectrometers in the orthogonal layout to monitor OH in the middle and upper atmosphere, is proved by the forward model. An inversion algorithm to obtain OH concentrations based on the simulated observation data of sensors and the errors in results are also given.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020, https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
Short summary
The mechanisms linking convection and air motion are major factors in much of the uncertainty in weather prediction, but complementary measurements of these quantities are rarely taken in close proximity. These quantities are shown from the 2017 Convective Processes Experiment (CPEX), wherein cloud and vertical air motion winds derived from the APR-2 airborne Doppler radar are combined with joint Doppler wind lidar (DAWN) measurements in the aerosol-rich regions surrounding the convection.
Alex T. Chartier, Juha Vierinen, and Geonhwa Jee
Atmos. Meas. Tech., 13, 3023–3031, https://doi.org/10.5194/amt-13-3023-2020, https://doi.org/10.5194/amt-13-3023-2020, 2020
Short summary
Short summary
A novel oblique ionospheric radio sounder has been developed and demonstrated in Antarctica. The transmitter was located at McMurdo and the receiver at the South Pole (1356 km great-circle path). The system cycled through 12 frequencies each minute and recorded signal time of flight, intensity, and Doppler. This allowed for the estimation of peak ionospheric electron density, which validated well against independent data from the nearby Jang Bogo ionosonde and GPS TEC.
Alexander V. Rodin, Dmitry V. Churbanov, Sergei G. Zenevich, Artem Y. Klimchuk, Vladimir M. Semenov, Maxim V. Spiridonov, and Iskander S. Gazizov
Atmos. Meas. Tech., 13, 2299–2308, https://doi.org/10.5194/amt-13-2299-2020, https://doi.org/10.5194/amt-13-2299-2020, 2020
Short summary
Short summary
The paper presents a new technique in remote wind measurements that may potentially complement conventional aerological observations and eventually greatly improve our knowledge about our climate system, especially concerning processes related to troposphere–stratosphere coupling. The technique may be implemented at relatively low cost in various applications from meteorological observation posts to remote sensing spacecraft.
Cited articles
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation:
contributions to weather, climate and space weather, Atmos. Meas. Tech., 4,
1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Anthes, R. A., Rocken, C., and Kuo, Y.-H.: Applications of COSMIC to
meteorology and climate, Terr. Atmos. Ocean. Sci., 11, 115–156, 2000.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F.,
Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H.,
Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C.,
Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C.,
Trenberth, K. E., Wee, T.-K., Yen, N. L., and Zeng, Z.: The
COSMIC/FORMOSAT-3 mission: Early results, B. Am. Meteorol. Soc., 89,
313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008.
Ao, C. O., Hajj, G. A., Meehan, T. K., Dong, D., Iijima, B. A., Mannucci, J.
A., and Kursinski, E. R.: Rising and setting GPS occultations by use of
open-loop tracking, J. Geophys. Res., 114, D04101, https://doi.org/10.1029/2008JD010483,
2009.
Aparicio, J. and Deblonde, G.: Impact of the assimilation of CHAMP
refractivity profiles in Environment Canada global forecasts, Mon. Weather
Rev., 136, 257–275, 2008.
Arras, C., Wickert, J., Beyerle, G., Heise, S., Schmidt, T., and Jacobi, C.:
A global climatology of ionospheric irregularities derived from GPS radio
occultation, Geophys. Res. Lett., 35, 137–149, https://doi.org/10.1029/2008gl034158, 2008.
Bai, W. H., Sun, Y. Q., Du, Q. F., and Wang, X. Y.: FY3 – GNOS Instrument
Performance and Results Analysis in Mountain-based Validation Experiment,
COSPAR 2012, India, 2012.
Bai, W. H., Sun, Y. Q., Du, Q. F., Yang, G. L., Yang, Z. D., Zhang, P., Bi,
Y. M., Wang, X. Y., Cheng, C., and Han, Y.: An introduction to the FY3 GNOS
instrument and mountain-top tests, Atmos. Meas. Tech., 7, 1817–1823,
https://doi.org/10.5194/amt-7-1817-2014, 2014a.
Bai, W. H., Sun, Y. Q., Du, Q. F., Yang, G. l., Yang, Z. D., Zhang, P., Bi,
Y. M., Wang, X. Y., Wang, D. W., and Meng, X. G.: An introduction to FY3 GNOS
in-orbit performance and preliminary validation results, EGU General
Assembly, Vienna, Geophysical Research Abstracts, 16, EGU2014-4036, 2014b.
Bai, W., Wang, G., Sun, Y., Shi, J., Meng, X., Wang, D., Du, Q., Wang, X.,
Xia, J., Cai, Y., Liu, C., Li, W., Wu, C., Zhao, D., Wu, D., and Liu, C.:
Application of Fengyun 3-C GNSS occulation sounder for assessing global
ionospheric response to magnetic storm event, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2016-291, in review, 2016.
Bai, W., Liu, C., Meng, X., Sun, Y., Kirchengast, G., Du, Q., Wang, X., Yang,
G., Liao, M., Yang, Z., Zhao, D., Xia, J., Cai, Y., Liu, L., and Wang, D.:
Evaluation of atmospheric profiles derived from single- and zero-difference
excess phase processing of BeiDou radio occultation data from the FY-3C GNOS
mission, Atmos. Meas. Tech., 11, 819–833,
https://doi.org/10.5194/amt-11-819-2018, 2018.
Beyerle, G., Schmidt, T., Michalak, G., Heise, S., Wickert, J., and Reigber,
C.: GPS radio occultation with GRACE: Atmospheric profiling utilizing the
zero difference technique, Geophys. Res. Lett., 32, L13806,
https://doi.org/10.1029/2005GL023109, 2005.
Brahmanandam, P. S., Uma, G., Liu, J. Y., Chu, Y. H., Latha Devi, N. S. M.
P., and Kakinami, Y.: Global S4 index variations observed using
FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year, J. Geophys.
Res.-Space Physics, 117, A09322, https://doi.org/10.1029/2012ja017966, 2012.
Cai, Y., Bai, W., Wang, X., Sun, Y., Du, Q., Zhao, D., Meng, X., Liu, C.,
Xia, J., Wang, D., Wu, D., Li, W., Wu, C., and Liu, C.: In-orbit performance
of GNOS on-board FY3-C and the enhancements for FY3-D satellite, Adv. Space
Res., 60, 2812–2821, https://doi.org/10.1016/j.asr.2017.05.001, 2017.
Cucurull, L. and Derber, J. C.: Operational implementation of COSMIC
observations into NCEP's global data assimilation system, Weather Forecast.,
23, 702–711, https://doi.org/10.1175/2008WAF2007070.1, 2008.
Culverwell, I. D., Lewis, H. W., Offiler, D., Marquardt, C., and Burrows, C.
P.: The Radio Occultation Processing Package, ROPP, Atmos. Meas. Tech., 8,
1887–1899, https://doi.org/10.5194/amt-8-1887-2015, 2015.
Dach, R., Hugentobler, U., Fridez, P., and Meindl, M.: Bernese GPS Software
Version 5.0. Astronomical Institute, University of Bern, Switzerland, 2007.
Du, Q. F., Sun, Y. Q., Bai, W. H., Wang, X. Y., Wang, D. W., Meng, X. G.,
Cai, Y. R., Liu, C. L., Wu, D., Wu, C. J., Li, W., Xia, J. M., and Liu, C.:
The Next Generation GNOS Instrument For FY-3 Meteorological Satellites,
IGARSS 2016, Beijing, 381–383, 2016.
Edwards, P. G. and Pawlak, D.: Metop: The space segment for Eumetsat's Polar
System, ESA Bulletin, 102, 6–18, 2000.
Fjeldbo, G., Kliore, G. A., and Eshleman, V. R.: The neutral atmosphere of
Venus as studied with the Mariner V radio occultation experiments, Astron.
J., 76, 123–140, 1971.
Foelsche, U., Pirscher, B., Borsche, M., Kirchengast, G., and Wickert, J.:
Assessing the climate monitoring utility of radio occultation data: From
CHAMP to FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci., 20, 155–170,
https://doi.org/10.3319/TAO.2008.01.14.01(F3C), 2009.
Foelsche, U., Scherllin-Pirscher, B., Ladstädter, F., Steiner, A. K., and
Kirchengast, G.: Refractivity and temperature climate records from multiple
radio occultation satellites consistent within 0.05%, Atmos. Meas. Tech., 4,
2007–2018, https://doi.org/10.5194/amt-4-2007-2011, 2011.
Gorbunov, M. E.: Ionospheric correction and statistical optimization of radio
occultation data, Radio Sci., 37, 1084, https://doi.org/10.1029/2000RS002370, 2002.
Gorbunov, M. E. and Lauritsen, K. B.: Analysis of wave fields by Fourier
integral operators and their application for radio occultations, Radio Sci.,
39, RS4010, https://doi.org/10.1029/2003RS002971, 2004.
Gorbunov, M. E., Gurvich, A. S., and Bengtsson, L.: Advanced algorithms of
inversion of GPS/MET satellite data and their application to reconstruction
of temperature and humidity, Tech. Rep. 211, Max Planck Inst. for Meteorol.,
Hamburg, Germany, 1996.
Gorbunov, M. E., Lauritsen, K. B., Benzon, H.-H., Larsen, G. B., Syndergaard,
S., and Sørensen, M. B.: Processing of GRAS/METOP radio occultation data
recorded in closed-loop and raw-sampling modes, Atmos. Meas. Tech., 4,
1021–1026, https://doi.org/10.5194/amt-4-1021-2011, 2011.
Harnisch, F., Healy, S. B., Bauer, P., and English, S. J.: Scaling of GNSS
radio occultation impact with observation number using an ensemble of data
assimilations, Mon. Weather Rev., 141, 4395–4413,
https://doi.org/10.1175/MWR-D-13-00098.1, 2013.
Healy, S. and Eyre, J. R.: Retrieving temperature, water vapor and surface
pressure information from refractive index profiles derived by radio
occultation: A simulation study, Q. J. Roy. Meteorol. Soc., 126, 1661–1683,
2000.
Healy, S. B. and Thépaut, J.-N.: Assimilation experiments with CHAMP GPS
radio occultation measurements, Q. J. Roy. Meteorol. Soc., 132, 605–623,
2006.
Ho, S.-P., Kirchengast, G., Leroy, S., Wickert, J., Mannucci, A. J.,
Steiner, A. K., Hunt, D., Schreiner, W., Sokolovskiy, S., Ao, C., Borsche,
M., von Engeln, A., Foelsche, U., Heise, S., Iijima, B., Kuo, Y.-H.,
Kursinski, R., Pirscher, B., Ringer, M., Rocken, C., and Schmidt, T.:
Estimating the uncertainty of using GPS radio occultation data for climate
monitoring: Intercomparison of CHAMP refractivity climate records from 2002
to 2006 from different data centers, J. Geophys. Res., 114, D23107,
https://doi.org/10.1029/2009JD011969, 2009.
Ho, S.-P., Hunt, D., Steiner, A. K., Mannucci, A. J., Kirchengast, G.,
Gleisner, H., Heise, S., von Engeln, A., Marquardt, C., Sokolovskiy, S.,
Schreiner, W., Scherllin-Pirscher, B., Ao, C., Wickert, J., Syndergaard, S.,
Lauritsen, K. B., Leroy, S., Kursinski, E. R., Kuo, Y-H., Foelsche, U.,
Schmidt, T., and Gorbunov, M.: Reproducibility of GPS radio occultation data
for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate
records 2002 to 2008 from six data centers, J. Geophys. Res., 117, D18111,
https://doi.org/10.1029/2012JD017665, 2012.
Huang, C.-Y., Kuo, Y.-H., Chen, S.-Y., Terng, C.-T., and Chien, F.-C., Lin,
P.-L., Kueh, M.-T., Chen, S.-H., Yang, M.-J., Wang, C.-J., and Prasad Rao, A.
S. K. A. V.: Impact of GPS radio occultation data assimilation on regional
weather predictions, GPS Solut., 14, 35–49, https://doi.org/10.1007/s10291-009-0144-1,
2010.
Jakowski, N., Wehrenpfennig, A., Heise, S., Reigber, C., Lühr, H.,
Grunwaldt, L., and Meehan, T. K.: GPS radio occultation measurements of the
ionosphere from CHAMP: Early results, Geophys. Res. Lett., 29, 1457,
https://doi.org/10.1029/2001GL014364, 2002.
Kuo, Y.-H., Zou, X., Chen, S. J., Huang, W., and Guo, Y.-R., Anthes, R. A.,
Exner, M., Hunt, D., Rocken, C., and Sokolovskiy, S.: A GPS/MET sonding
through an intense upper-level front, B. Am. Meteorol. Soc., 79, 617–626,
1998.
Kursinski, E. R., Hajj, G. A., Bertiger, W. I., Leroy, S. S., Meehan, T. K.,
Romans, L. J., Schofield, J. T., McCleese, D. J., Melbourne, W. G., Thornton,
C. L., Yunck, T. P., Eyre, J. R., and Nagatani, R. N.: Initial Results of
radio occultation observations of Earth's atmosphere using the Global
Positioning System, Science, 271, 1107–1110, 1996.
Kursinski, E. R., Hajj, G. A., Hardy, K. R., Schofield, J. T., and Linfield,
R.: Observing Earth's atmosphere with radio occultation measurements, J.
Geophys. Res., 102, 23429–23465, 1997.
Lackner, B. C., Steiner, A. K., Hegerl, G. C., and Kirchengast, G.:
Atmospheric climate change detection by radio occultation data using a
fingerprinting method, J. Climate, 24, 5275–5291,
https://doi.org/10.1175/2011JCLI3966.1, 2011.
Le Marshall, J., Xiao, Y., Norman, R., Zhang, K., Rea, A., Cucurull, L.,
Seecamp, R., Steinle, P., Puri, K., and Le, T.: The beneficial impact of
radio occultation observations on Australian region forecasts, Australian
Meteorol. Oceanogr. J., 60, 121–125, 2010.
Leroy, S. S.: The measurement of geopotential heights by GPS radio
occultation, J. Geophys. Res., 102, 6971–6986, 1997.
Li, M., Li, W., Shi, C., Jiang, K., Guo, X., Dai, X., Meng, X., Yang, Z.,
Yang, G., and Liao, M.: Precise orbit determination of the Fengyun-3C
satellite using onboard GPS and BDS observations, J. Geodesy, 91, 1313–1327,
2017.
Liao, M., Zhang, P., Bi, Y. M., and Yang, G. L.: A preliminary estimation of
the radio occultation products accuracy from the Fengyun-3C meteorological
satellite, Acta Meteorol. Sin., 73, 1131–1140, 2015.
Liao, M., Zhang, P., Yang, G. l., Bai, W. H., Meng, X. G., Du, Q. F., and
Sun, Y. Q.: Status of Radio Occultation Sounding Technology of FY-3C GNOS,
Adv. Meteorol. Sci. Technol., 6, 83–87, 2016a.
Liao, M., Zhang, P., Yang, G.-L., Bi, Y.-M., Liu, Y., Bai, W.-H., Meng,
X.-G., Du, Q.-F., and Sun, Y.-Q.: Preliminary validation of the refractivity
from the new radio occultation sounder GNOS/FY-3C, Atmos. Meas. Tech., 9,
781–792, https://doi.org/10.5194/amt-9-781-2016, 2016b.
Liu, C. L., Kirchengast, G., Zhang, K. F., Norman, R., Li, Y., Zhang, S. C.,
Carter, B., Fritzer, J., Schwaerz, M., Choy, S. L., Wu, S. Q., and Tan, Z.
X.: Characterisation of residual ionospheric errors in bending angles using
GNSS RO end-to-end simulations, Adv. Space Res., 52, 821–836,
https://doi.org/10.1016/j.asr.2013.05.021, 2013.
Liu, C. L., Kirchengast, G., Zhang, K. F., Tan, Z. X., Johannes, F., and Sun,
Y. Q.: The effects of residual ionospheric errors on GPS radio occultation
temperature, Chinese J. Geophys., 57, 2404–2414, 2014 (in Chinese).
Liu, C. L., Kirchengast, G., Zhang, K., Norman, R., Li, Y., Zhang, S. C.,
Fritzer, J., Schwaerz, M., Wu, S. Q., and Tan, Z. X.: Quantifying residual
ionospheric errors in GNSS radio occultation bending angles based on
ensembles of profiles from end-to-end simulations, Atmos. Meas. Tech., 8,
2999–3019, https://doi.org/10.5194/amt-8-2999-2015, 2015.
Liu, C., Kirchengast, G., Sun, Y., Bai, W., Du, Q., Wang, X., Meng, X., Wang,
D., Cai, Y., Wu, D., Wu, C., Li, W., Xia, J., and Liu, C.: Study of bending
angle residual ionosphric error in real RO data, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4171–4174, https://doi.org/10.1109/igarss.2016.7730087, 2016.
Liu, C., Kirchengast, G., Sun, Y., Zhang, K., Norman, R., Schwaerz, M., Bai,
W., Du, Q., and Li, Y.: Analysis of ionospheric structure influences on
residual ionospheric errors in GNSS radio occultation bending angles based on
ray tracing simulations, Atmos. Meas. Tech., 11, 2427–2440,
https://doi.org/10.5194/amt-11-2427-2018, 2018.
Liu, Y. and Xue, J.: Assimilation of GNSS radio occultation observations in
GRAPES, Atmos. Meas. Tech., 7, 3935–3946,
https://doi.org/10.5194/amt-7-3935-2014, 2014.
Loescher, A. and Kirchengast, G.: Variational data assimilation for deriving
global climate analyses from GNSS radio occultation data, GPS Solut., 12,
227–235, https://doi.org/10.1007/s10291-008-0087-y, 2008.
Loiselet, M., Stricker, N., Menard, Y., and Luntama, J.-P.: GRAS – Metop's
GPS-based atmospheric sounder, ESA Bulletin, 102, 38–44, 2000.
Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A.,
Healy, S., von Engeln, A., O'Clerigh, E., and Marquardt, C.: Prospects of the
EPS GRAS mission for operational atmospheric applications, B. Am. Meteorol.
Soc., 89, 1863–1875, https://doi.org/10.1175/2008BAMS2399.1, 2008.
Mao, T., Sun, L., Yang, G., Yue, X., Yu, T., Huang, C., Zeng, Z., Wang, Y.,
and Wang, J.: First Ionospheric Radio-Occultation Measurements From GNSS
Occultation Sounder on the Chinese Feng-Yun 3C Satellite, IEEE T. Geosci.
Remote, 54, 5044–5053, 2016.
Melbourne, W. G., Davis, E. S., Duncan, C. B., Hajj, G. A., Hardy, K. R.,
Kursinski, E. R., Meehan, T. K., Yong, L. E., and Yunck, T. P.: The
application of spaceborne GPS to atmospheric limb sounding and global change
monitoring, JPL Publ. 94-18, Jet Propulsion Lab, Calif. Inst. of Technol.,
Pasadena, CA, 1994.
Offiler, D.: The radio occultation processing package (ROPP) an overview,
Tech. Rep., GRAS SAF, Document-No: SAF/GRAS/METO/UG/ROPP/001, 2008.
Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M.: Monitoring of
global ionospheric irregularities using the Worldwide GPS Network, Geophys.
Res. Lett., 24, 2283–2286, https://doi.org/10.1029/97gl02273, 1997.
Poli, P., Joiner, J., and Kursinski, E. R.: 1DVAR analysis of temperature
and humidity using GPS radio occultation refractivity data, J. Geophys.
Res., 107, 4448, https://doi.org/10.1029/2001JD000935, 2002.
Poli, P., Healy, S. B., Rabier, F., and Pailleux, J.: Preliminary assessment
of the scalability of GPS radio occultations impact in numerical weather
prediction, Geophys. Res. Lett., 35, L23811, https://doi.org/10.1029/2008GL035873,
2008.
Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R.,
Gorbunov, M., Schreiner, W., Feng, D., Herman, B., Kuo, Y.-H., and Zou, X.:
Analysis and validation of GPS/MET data in the neutral atmosphere, J.
Geophys. Res., 102, 29849–29866, 1997.
Rocken, C., Kuo, Y.-H., Schreiner, W., Hunt, D. C., and Sokolovskiy, S. V.:
COSMIC system description, Special Issue, Terr. Atmos. Ocean. Sci., 11,
21–52, 2000.
Schmidt, T., Heise, S., Wickert, J., Beyerle, G., and Reigber, C.: GPS radio
occultation with CHAMP and SAC-C: global monitoring of thermal tropopause
parameters, Atmos. Chem. Phys., 5, 1473–1488,
https://doi.org/10.5194/acp-5-1473-2005, 2005.
Schmidt, T., Wickert, J., Beyerle, G., and Heise, S.: Global tropopause
height trends estimated from GPS radio occultation data, Geophys. Res.
Lett., 35, L11806, https://doi.org/10.1029/2008GL034012, 2008.
Schmidt, T., Wickert, J., and Haser, A.: Variability of the upper troposphere
and lower stratosphere observed with GPS radio occultation bending angles and
temperatures, Adv. Space Res., 46, 150–161, https://doi.org/10.1016/j.asr.2010.01.021,
2010.
Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S., and Hunt, D.:
Estimates of the precision of GPS radio occultations from the
COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808,
https://doi.org/10.1029/2006GL027557, 2007.
Sokolovskiy, S. V.: Tracking tropospheric radio occultation signals from low
Earth orbit, Radio Sci., 36, 483–498, 2001.
Sokolovskiy, S. V., Rocken, C., Lenschow, D. H., Kuo, Y.-H., Anthes,R. A.,
Schreiner, W. S., and Hunt, D. C.: Observing the moist troposphere with
radio occultation signals from COSMIC, Geophys. Res. Lett., 34, L18802,
https://doi.org/10.1029/2007GL030458, 2007.
Sokolovskiy, S., Rocken, C., Schreiner, W., Hunt, D. C., and Johnson, J.:
Postprocessing of L1 GPS radio occultation signals recorded in open-loop
mode, Radio Sci., 44, RS2002, https://doi.org/10.1029/2008RS003907, 2009.
Steiner, A. K., Kirchengast, G., and Ladreiter, H. P.: Inversion, error
analysis, and validation of GPS/MET occultation data, Ann. Geophys., 17,
122–138, https://doi.org/10.1007/s00585-999-0122-5, 1999.
Steiner, A. K., Kirchengast, G., Lackner, B. C., Pirscher, B., Borsche, M.,
and Foelsche, U.: Atmospheric temperature change detection with GPS radio
occultation 1995 to 2008, Geophys. Res. Lett., 36, L18702,
https://doi.org/10.1029/2009GL039777, 2009.
Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B.,
Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate
monitoring and change detection, Radio Sci., 46, RS0D24,
https://doi.org/10.1029/2010RS004614, 2011.
Steiner, A. K., Hunt, D., Ho, S.-P., Kirchengast, G., Mannucci, A. J.,
Scherllin-Pirscher, B., Gleisner, H., von Engeln, A., Schmidt, T., Ao, C.,
Leroy, S. S., Kursinski, E. R., Foelsche, U., Gorbunov, M., Heise, S., Kuo,
Y.-H., Lauritsen, K. B., Marquardt, C., Rocken, C., Schreiner, W.,
Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Quantification of
structural uncertainty in climate data records from GPS radio occultation,
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013,
2013.
Sun Y. Q., Liu C. L., Du Q. F., Wang X. Y., Bai W. H., Kirchengast G., Xia J.
M., Meng X. G., Wang D. W., Cai Y. R., Zhao D. Y., Wu C. J., Li W., and Liu
C.: Global Navigation Satellite System Occultation Sounder II (GNOS II),
IGARSS 2017, Fort Worth, IEEE Xplore, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1189–1192, https://doi.org/10.1109/IGARSS.2017.8127170, 2017.
Syndergaard, S.: On the ionosphere calibration in GPS radio occultation
measurements, Radio Sci., 35, 865–883, https://doi.org/10.1029/1999rs002199, 2000.
Von Engeln, A., Healy, S., Marquardt, C., Andres, Y., and Sancho, F.:
Validation of operational GRAS radio occultation data, Geophys. Res. Lett.,
36, L17809, https://doi.org/10.1029/2009GL039968, 2009.
Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the accuracy of the
atmospheric refractive index recovery from doppler shift measurements at
frequencies used in the NAVSTAR system, Phys. Atmos. Ocean, 29, 602–609,
1994.
Wang, S. Z., Zhu, G. W., Bai, W. H., Liu, C. L., Sun, Y. Q., Du, Q. F., Wang,
X. Y., Meng, X. G., Yang, G. l., Yang, Z. D., Zhang, X. X., Bi, Y. M., Wang,
D. W., Xia, J. M., Wu, D., Cai, Y. R., and Han, Y.: For the first time
fengyun3 C satellite-global navigation satellite system occultation sounder
achieved spaceborne Bei Dou system radio occultation, Acta Phys. Sin., 64,
089301,
1–7, 2015.
Wang, X. Y., Sun, Y. Q., Bai, W. H., Du, Q. F., Wang, D. W., Wu, D., Yu, Q.
L., and Han, Y.: Simulation of number and distribution of Compass occultation
events, Chinese J. Geophys., 56, 2521–2530, 2013.
Wang, X. Y., Sun, Y. Q., Du, Q. F., Bai, W. H., Wang, D. W., Cai, Y. R., Wu,
D., and Yu, Q. L.: GNOS – Radio Occultation Sounder on Board of Chinese FY3
Satellites, IGARSS 2014, Quebec, 4982–4985, 2014.
Wang, X. Y., Sun, Y. Q., Du, Q. F., Wang, D. W., Wu, D., Cai, Y. R., Wu, C.
J., Bai, W. H., Xia, J. M., and Li, W.: An Integrated GNSS Remote Sensing
Instrument and Its First GNSSR Airborne Experiment, IGARSS 2016, Beijing,
4827–4830, 2016.
Ware, R., Exner, M., Feng, D., Gorbunov, M., Hardy, K., Herman, B., Kuo, Y.,
Meehan, T., Melbourne, W., Rocken, C., Schreiner, W., Sokolovskiy, S.,
Solheim, F., Zou, X., Anthes, R., Businger, S., and Trenberth, K.: GPS
Sounding of the atmosphere from Low Earth Orbit: Preliminary results, B. Am.
Meteorol. Soc., 77, 19–40, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2, 1996.
Wickert, J.: Amplitude variations in GPS signals as a possible indicator of
ionospheric structures, Geophys. Res. Lett., 31, L24801,
https://doi.org/10.1029/2004gl020607, 2004.
Wickert, J., Reigber, C., Beyerle, G., Koenig, R., Marquardt, C., Schmidt,
T., and Grunwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and Hocke,
K.: Atmosphere sounding by GPS radio occultation: First results from CHAMP,
Geophys. Res. Lett., 28, 3263–3266, https://doi.org/10.1029/2001GL013117, 2001.
Wickert, J., Beyerle, G., Hajj, G. A., Schwieger, V., and Reigber, C.: GPS
radio occultation with CHAMP: Atmospheric profiling utilizing the
space-based single difference technique, Geophys. Res. Lett., 29,
28-1–28-4, https://doi.org/10.1029/2001GL013982, 2002.
Wickert, J., Beyerle, G., König, R., Heise, S., Grunwaldt, L., Michalak,
G., Reigber, Ch., and Schmidt, T.: GPS radio occultation with CHAMP and
GRACE: A first look at a new and promising satellite configuration for global
atmospheric sounding, Ann. Geophys., 23, 653–658,
https://doi.org/10.5194/angeo-23-653-2005, 2005.
Wu, X., Hu, X., Gong, X., Zhang, X., and Wang, X.: Analysis of inversion
errors of ionospheric radio occultation, GPS Solutions, 13, 231–239,
https://doi.org/10.1007/s10291-008-0116-x, 2009.
Xiong, C., Lu, C., Zhu, J., and Ding, H.: Orbit determination using real
tracking data from FY3C-GNOS, Adv. Space Res., 60, 543–556, 2017.
Yang, G. L., Sun Y. Q., Bai, W. H., Zhang, X. X., Liu, C. L., Meng, X. G.,
Bi, Y. M., Wang, D. W., and Zhao, D. Y.: Validation results of NmF2 and hmF2
derived from ionospheric density profiles of GNOS on FY-3C Satellite, Science
China Technological Sciences, 59, 183–190, https://doi.org/10.1007/s11431-015-5920-2,
2017.
Yue, X., Schreiner, W. S., Zeng, Z., Kuo, Y.-H., and Xue, X.: Case study on
complex sporadic E layers observed by GPS radio occultations, Atmos. Meas.
Tech., 8, 225–236, https://doi.org/10.5194/amt-8-225-2015, 2015.
Zhao, Q., Wang, C., Guo, J., Yang, G., Liao, M., Ma, H., and Liu, J.:
Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard
GNSS data, GPS Solutions, 21, 1179–1190, 2017.
Short summary
The GNSS Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth’s neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BDS and the US GPS. This paper reviews the FY-3C GNOS mission.
The GNSS Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese...