Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1979-2019
https://doi.org/10.5194/amt-12-1979-2019
Research article
 | 
29 Mar 2019
Research article |  | 29 Mar 2019

Assessment of the total precipitable water from a sun photometer, microwave radiometer and radiosondes at a continental site in southeastern Europe

Konstantinos Fragkos, Bogdan Antonescu, David M. Giles, Dragoş Ene, Mihai Boldeanu, Georgios A. Efstathiou, Livio Belegante, and Doina Nicolae

Related authors

Are EARLINET and AERONET climatologies consistent? The case of Thessaloniki, Greece
Nikolaos Siomos, Dimitris S. Balis, Kalliopi A. Voudouri, Eleni Giannakaki, Maria Filioglou, Vassilis Amiridis, Alexandros Papayannis, and Konstantinos Fragkos
Atmos. Chem. Phys., 18, 11885–11903, https://doi.org/10.5194/acp-18-11885-2018,https://doi.org/10.5194/acp-18-11885-2018, 2018
Short summary
Temperature dependence of the Brewer global UV measurements
Ilias Fountoulakis, Alberto Redondas, Kaisa Lakkala, Alberto Berjon, Alkiviadis F. Bais, Lionel Doppler, Uwe Feister, Anu Heikkila, Tomi Karppinen, Juha M. Karhu, Tapani Koskela, Katerina Garane, Konstantinos Fragkos, and Volodya Savastiouk
Atmos. Meas. Tech., 10, 4491–4505, https://doi.org/10.5194/amt-10-4491-2017,https://doi.org/10.5194/amt-10-4491-2017, 2017
Short summary
The impact of the ozone effective temperature on satellite validation using the Dobson spectrophotometer network
Maria Elissavet Koukouli, Marina Zara, Christophe Lerot, Konstantinos Fragkos, Dimitris Balis, Michel van Roozendael, Marcus Antonius Franciscus Allart, and Ronald Johannes van der A
Atmos. Meas. Tech., 9, 2055–2065, https://doi.org/10.5194/amt-9-2055-2016,https://doi.org/10.5194/amt-9-2055-2016, 2016
Short summary
Dead time effect on the Brewer measurements: correction and estimated uncertainties
Ilias Fountoulakis, Alberto Redondas, Alkiviadis F. Bais, Juan José Rodriguez-Franco, Konstantinos Fragkos, and Alexander Cede
Atmos. Meas. Tech., 9, 1799–1816, https://doi.org/10.5194/amt-9-1799-2016,https://doi.org/10.5194/amt-9-1799-2016, 2016
Short summary
Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds
Ilias Fountoulakis, Alkiviadis F. Bais, Konstantinos Fragkos, Charickleia Meleti, Kleareti Tourpali, and Melina Maria Zempila
Atmos. Chem. Phys., 16, 2493–2505, https://doi.org/10.5194/acp-16-2493-2016,https://doi.org/10.5194/acp-16-2493-2016, 2016
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Greenhouse gas column observations from a portable spectrometer in Uganda
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024,https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary
Independent validation of IASI/MetOp-A LMD and RAL CH4 products using CAMS model, in situ profiles, and ground-based FTIR measurements
Bart Dils, Minqiang Zhou, Claude Camy-Peyret, Martine De Mazière, Yannick Kangah, Bavo Langerock, Pascal Prunet, Carmine Serio, Richard Siddans, and Brian Kerridge
Atmos. Meas. Tech., 17, 5491–5524, https://doi.org/10.5194/amt-17-5491-2024,https://doi.org/10.5194/amt-17-5491-2024, 2024
Short summary
Joint spectral retrievals of ozone with Suomi NPP CrIS augmented by S5P/TROPOMI
Edward Malina, Kevin W. Bowman, Valentin Kantchev, Le Kuai, Thomas P. Kurosu, Kazuyuki Miyazaki, Vijay Natraj, Gregory B. Osterman, Fabiano Oyafuso, and Matthew D. Thill
Atmos. Meas. Tech., 17, 5341–5371, https://doi.org/10.5194/amt-17-5341-2024,https://doi.org/10.5194/amt-17-5341-2024, 2024
Short summary
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024,https://doi.org/10.5194/amt-17-4957-2024, 2024
Short summary
Applicability of the inverse dispersion method to measure emissions from animal housings
Marcel Bühler, Christoph Häni, Albrecht Neftel, Patrice Bühler, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 17, 4649–4658, https://doi.org/10.5194/amt-17-4649-2024,https://doi.org/10.5194/amt-17-4649-2024, 2024
Short summary

Cited articles

American Meteorological Society: Precipitable Water, Glossary of Meteorology, available at: http://glossary.ametsoc.org/wiki/Precipitable_water (last access: 10 July 2018), 2018. a
Barreto, A., Cuevas, E., Damiri, B., Romero, P. M., and Almansa, F.: Column water vapor determination in night period with a lunar photometer prototype, Atmos. Meas. Tech., 6, 2159–2167, https://doi.org/10.5194/amt-6-2159-2013, 2013. a
Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based cloud property data record CLAAS-2, Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, 2017. a
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res.-Atmos., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992. a
Campanelli, M., Mascitelli, A., Sanò, P., Diémoz, H., Estellés, V., Federico, S., Iannarelli, A. M., Fratarcangeli, F., Mazzoni, A., Realini, E., Crespi, M., Bock, O., Martínez-Lozano, J. A., and Dietrich, S.: Precipitable water vapour content from ESR/SKYNET sun-sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe, Atmos. Meas. Tech., 11, 81–94, https://doi.org/10.5194/amt-11-81-2018, 2018. a, b, c
Download
Short summary
In this study the quality of the total precipitable water (TPW) retrieved from the newly released AERONET version 3 algorithm is assessed, through comparison with independent measurements of the TPW from a microwave radiometer and radiosondes at a station in southeastern Europe. The findings show that there are improvements in the estimation of TPW in version 3 compared to version 2 of the algorithm.