Articles | Volume 12, issue 2
https://doi.org/10.5194/amt-12-903-2019
https://doi.org/10.5194/amt-12-903-2019
Research article
 | 
11 Feb 2019
Research article |  | 11 Feb 2019

Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring

Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian

Related authors

Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022,https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa
Carl Malings, Daniel M. Westervelt, Aliaksei Hauryliuk, Albert A. Presto, Andrew Grieshop, Ashley Bittner, Matthias Beekmann, and R. Subramanian
Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020,https://doi.org/10.5194/amt-13-3873-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors
Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi
Atmos. Meas. Tech., 17, 3917–3931, https://doi.org/10.5194/amt-17-3917-2024,https://doi.org/10.5194/amt-17-3917-2024, 2024
Short summary
Detection and long-term quantification of methane emissions from an active landfill
Pramod Kumar, Christopher Caldow, Grégoire Broquet, Adil Shah, Olivier Laurent, Camille Yver-Kwok, Sebastien Ars, Sara Defratyka, Susan Warao Gichuki, Luc Lienhardt, Mathis Lozano, Jean-Daniel Paris, Felix Vogel, Caroline Bouchet, Elisa Allegrini, Robert Kelly, Catherine Juery, and Philippe Ciais
Atmos. Meas. Tech., 17, 1229–1250, https://doi.org/10.5194/amt-17-1229-2024,https://doi.org/10.5194/amt-17-1229-2024, 2024
Short summary
Research of low-cost air quality monitoring models with different machine learning algorithms
Gang Wang, Chunlai Yu, Kai Guo, Haisong Guo, and Yibo Wang
Atmos. Meas. Tech., 17, 181–196, https://doi.org/10.5194/amt-17-181-2024,https://doi.org/10.5194/amt-17-181-2024, 2024
Short summary
Field assessments on impact of CO2 concentration fluctuations along with complex terrain flows on the estimation of the net ecosystem exchange of temperate forests
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-6,https://doi.org/10.5194/amt-2024-6, 2024
Revised manuscript accepted for AMT
Short summary
New insights from the Jülich Ozone Sonde Intercomparison Experiment: calibration functions traceable to one ozone reference instrument
Herman G. J. Smit, Deniz Poyraz, Roeland Van Malderen, Anne M. Thompson, David W. Tarasick, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 73–112, https://doi.org/10.5194/amt-17-73-2024,https://doi.org/10.5194/amt-17-73-2024, 2024
Short summary

Cited articles

Afshar-Mohajer, N., Zuidema, C., Sousan, S., Hallett, L., Tatum, M., Rule, A. M., Thomas, G., Peters, T. M., and Koehler, K.: Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide, J. Occup. Environ. Hyg., 15, 87–98, https://doi.org/10.1080/15459624.2017.1388918, 2018. 
Aleksander, I. and Morton, H.: An introduction to neural computing, 2nd Edn., International Thomson Computer Press, London, 1995. 
Camalier, L., Eberly, S., Miller, J., and Papp, M.: Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A, U.S. Environmental Protection Agency, available at: https://www3.epa.gov/ttn/amtic/files/ambient/monitorstrat/precursor/07workshopmeaning.pdf (last access: 5 February 2019), 2007. 
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017. 
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, 2017. 
Download
Short summary
This paper compares several methods for calibrating data from low-cost air quality monitors to reflect the concentrations of various gaseous pollutants in the atmosphere, identifying the best-performing approaches. With these calibration methods, such monitors can be used to gather information on air quality at a higher spatial resolution than is possible using traditional technologies and can be deployed to areas (e.g. developing countries) where there are no existing monitor networks.