Articles | Volume 13, issue 4
https://doi.org/10.5194/amt-13-1963-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-1963-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flow-induced errors in airborne in situ measurements of aerosols and clouds
University of Vienna (UNIVIE), Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, Austria
Maximilian Dollner
University of Vienna (UNIVIE), Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, Austria
Josef Gasteiger
University of Vienna (UNIVIE), Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, Austria
T. Paul Bui
NASA Ames Research Center, Mountain View, CA, USA
Bernadett Weinzierl
University of Vienna (UNIVIE), Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, Austria
Related authors
Adrian Walser, Daniel Sauer, Antonio Spanu, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Meas. Tech., 10, 4341–4361, https://doi.org/10.5194/amt-10-4341-2017, https://doi.org/10.5194/amt-10-4341-2017, 2017
Short summary
Short summary
We present a new approach to model the response of optical particle counters (OPCs) including a simple parametrization for artificial broadening of size spectra induced by the non-ideal behavior of real OPCs. We show a self-consistent way to evaluate calibration measurements and outline how particle number size distributions with realistic uncertainty estimates can be derived. The innovations will improve the accuracy of OPC-derived size distributions and allow to assess their precision.
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 6945–6964, https://doi.org/10.5194/amt-17-6945-2024, https://doi.org/10.5194/amt-17-6945-2024, 2024
Short summary
Short summary
We tested a method to identify airborne microplastics (MPs), merging imaging, fluorescence, and machine learning of single particles. We examined whether combining imaging and fluorescence data enhances classification accuracy compared to using each method separately and tested these methods with other particle types. The tested MPs have distinct fluorescence, and a combined imaging and fluorescence method improves their detection, making meaningful progress in monitoring MPs in the atmosphere.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024, https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Short summary
Transporting a representative aerosol sample to instrumentation inside a research aircraft remains a challenge due to losses or enhancements of particles in the aerosol sampling system. Here, we present sampling efficiencies and the cutoff diameter for the DLR Falcon aerosol sampling system as a function of true airspeed by comparing the in-cabin and the out-cabin particle number size distributions observed during the A-LIFE aircraft mission.
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-701, https://doi.org/10.5194/egusphere-2024-701, 2024
Short summary
Short summary
The A-LIFE aircraft field experiment was carried out in the Eastern Mediterranean in 2017. Using A-LIFE data, we studied the change in mineral dust optical properties due to mixing with anthropogenic aerosols. We found that increasing pollution affects dust optical properties which has implications for identifying dust events and understanding their climate effects. We also show that optical properties of Saharan and Arabian dust are similar when comparing cases with equal pollution content.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Paulus S. Bauer, Dorian Spät, Martina Eisenhut, Andreas Gattringer, and Bernadett Weinzierl
Atmos. Meas. Tech., 16, 4445–4460, https://doi.org/10.5194/amt-16-4445-2023, https://doi.org/10.5194/amt-16-4445-2023, 2023
Short summary
Short summary
Particle number concentration is one of the most important parameters to quantify an aerosol. Aerosol number concentration in the nanometer range is commonly measured with condensation particle counters (CPCs). A CEN technical specification harmonizes the CPC specifications. However, it is not specified for low-pressure conditions as on high mountains or on airplanes. Here, we present the pressure-dependent performance of two different models of CEN CPCs, the Grimm 5410 CEN and the TSI 3772 CEN.
Emma L. Yates, Laura T. Iraci, Susan S. Kulawik, Ju-Mee Ryoo, Josette E. Marrero, Caroline L. Parworth, Jason M. St. Clair, Thomas F. Hanisco, Thao Paul V. Bui, Cecilia S. Chang, and Jonathan M. Dean-Day
Earth Syst. Sci. Data, 15, 2375–2389, https://doi.org/10.5194/essd-15-2375-2023, https://doi.org/10.5194/essd-15-2375-2023, 2023
Short summary
Short summary
The Alpha Jet Atmospheric eXperiment (AJAX) flew scientific flights between 2011 and 2018 providing measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor and meteorological parameters over California and Nevada, USA. AJAX was a multi-year, multi-objective, multi-instrument program with a variety of sampling strategies resulting in an extensive dataset of interest to a wide variety of users. AJAX measurements have been published at https://asdc.larc.nasa.gov/project/AJAX.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Marilena Teri, Thomas Müller, Josef Gasteiger, Sara Valentini, Helmuth Horvath, Roberta Vecchi, Paulus Bauer, Adrian Walser, and Bernadett Weinzierl
Atmos. Meas. Tech., 15, 3161–3187, https://doi.org/10.5194/amt-15-3161-2022, https://doi.org/10.5194/amt-15-3161-2022, 2022
Short summary
Short summary
We performed an extensive closure study including laboratory and simulated experiments to evaluate various angular corrections for the Aurora 4000 polar nephelometer, focusing on irregularly shaped aerosols such as mineral dust. We describe the impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient and propose a guideline to establish the most appropriate angular correction depending on the aerosol type and the investigated size range.
Glenn M. Wolfe, Thomas F. Hanisco, Heather L. Arkinson, Donald R. Blake, Armin Wisthaler, Tomas Mikoviny, Thomas B. Ryerson, Ilana Pollack, Jeff Peischl, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Alex Teng, L. Gregory Huey, Xiaoxi Liu, Alan Fried, Petter Weibring, Dirk Richter, James Walega, Samuel R. Hall, Kirk Ullmann, Jose L. Jimenez, Pedro Campuzano-Jost, T. Paul Bui, Glenn Diskin, James R. Podolske, Glen Sachse, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 4253–4275, https://doi.org/10.5194/acp-22-4253-2022, https://doi.org/10.5194/acp-22-4253-2022, 2022
Short summary
Short summary
Smoke plumes are chemically complex. This work combines airborne observations of smoke plume composition with a photochemical model to probe the production of ozone and the fate of reactive gases in the outflow of a large wildfire. Model–measurement comparisons illustrate how uncertain emissions and chemical processes propagate into simulated chemical evolution. Results provide insight into how this system responds to perturbations, which can help guide future observation and modeling efforts.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Short summary
Dust orientation in the Earth's atmosphere has been an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Eric J. Hintsa, Fred L. Moore, Dale F. Hurst, Geoff S. Dutton, Bradley D. Hall, J. David Nance, Ben R. Miller, Stephen A. Montzka, Laura P. Wolton, Audra McClure-Begley, James W. Elkins, Emrys G. Hall, Allen F. Jordan, Andrew W. Rollins, Troy D. Thornberry, Laurel A. Watts, Chelsea R. Thompson, Jeff Peischl, Ilann Bourgeois, Thomas B. Ryerson, Bruce C. Daube, Yenny Gonzalez Ramos, Roisin Commane, Gregory W. Santoni, Jasna V. Pittman, Steven C. Wofsy, Eric Kort, Glenn S. Diskin, and T. Paul Bui
Atmos. Meas. Tech., 14, 6795–6819, https://doi.org/10.5194/amt-14-6795-2021, https://doi.org/10.5194/amt-14-6795-2021, 2021
Short summary
Short summary
We built UCATS to study atmospheric chemistry and transport. It has measured trace gases including CFCs, N2O, SF6, CH4, CO, and H2 with gas chromatography, as well as ozone and water vapor. UCATS has been part of missions to study the tropical tropopause; transport of air into the stratosphere; greenhouse gases, transport, and chemistry in the troposphere; and ozone chemistry, on both piloted and unmanned aircraft. Its design, capabilities, and some results are shown and described here.
Charles A. Brock, Karl D. Froyd, Maximilian Dollner, Christina J. Williamson, Gregory Schill, Daniel M. Murphy, Nicholas J. Wagner, Agnieszka Kupc, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Douglas A. Day, Derek J. Price, Bernadett Weinzierl, Joshua P. Schwarz, Joseph M. Katich, Siyuan Wang, Linghan Zeng, Rodney Weber, Jack Dibb, Eric Scheuer, Glenn S. Diskin, Joshua P. DiGangi, ThaoPaul Bui, Jonathan M. Dean-Day, Chelsea R. Thompson, Jeff Peischl, Thomas B. Ryerson, Ilann Bourgeois, Bruce C. Daube, Róisín Commane, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021, https://doi.org/10.5194/acp-21-15023-2021, 2021
Short summary
Short summary
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of the remote atmosphere. From this, we developed a comprehensive description of aerosol properties that provides a unique, global-scale dataset against which models can be compared. The data show the polluted nature of the remote atmosphere in the Northern Hemisphere and quantify the contributions of sea salt, dust, soot, biomass burning particles, and pollution particles to the haziness of the sky.
Christina J. Williamson, Agnieszka Kupc, Andrew Rollins, Jan Kazil, Karl D. Froyd, Eric A. Ray, Daniel M. Murphy, Gregory P. Schill, Jeff Peischl, Chelsea Thompson, Ilann Bourgeois, Thomas B. Ryerson, Glenn S. Diskin, Joshua P. DiGangi, Donald R. Blake, Thao Paul V. Bui, Maximilian Dollner, Bernadett Weinzierl, and Charles A. Brock
Atmos. Chem. Phys., 21, 9065–9088, https://doi.org/10.5194/acp-21-9065-2021, https://doi.org/10.5194/acp-21-9065-2021, 2021
Short summary
Short summary
Aerosols in the stratosphere influence climate by scattering and absorbing sunlight and through chemical reactions occurring on the particles’ surfaces. We observed more nucleation mode aerosols (small aerosols, with diameters below 12 nm) in the mid- and high-latitude lowermost stratosphere (8–13 km) in the Northern Hemisphere (NH) than in the Southern Hemisphere. The most likely cause of this is aircraft emissions, which are concentrated in the NH at similar altitudes to our observations.
Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Douglas A. Day, Jason C. Schroder, Dongwook Kim, Jack E. Dibb, Maximilian Dollner, Bernadett Weinzierl, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 3631–3655, https://doi.org/10.5194/amt-14-3631-2021, https://doi.org/10.5194/amt-14-3631-2021, 2021
Short summary
Short summary
We utilize a set of high-quality datasets collected during the NASA Atmospheric Tomography Mission to investigate the impact of differences in observable particle sizes across aerosol instruments in aerosol measurement comparisons. Very good agreement was found between chemically and physically derived submicron aerosol volume. Results support a lack of significant unknown biases in the response of an Aerodyne aerosol mass spectrometer (AMS) when sampling remote aerosols across the globe.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Reem A. Hannun, Andrew K. Swanson, Steven A. Bailey, Thomas F. Hanisco, T. Paul Bui, Ilann Bourgeois, Jeff Peischl, and Thomas B. Ryerson
Atmos. Meas. Tech., 13, 6877–6887, https://doi.org/10.5194/amt-13-6877-2020, https://doi.org/10.5194/amt-13-6877-2020, 2020
Short summary
Short summary
We have developed a cavity-enhanced absorption instrument to measure ozone in the atmosphere. The detection technique enables highly sensitive measurements in fast averaging times. The compact, robust instrument is suitable for operation in varied field environments, including aboard research aircraft. We have successfully flown the instrument and demonstrated its performance capabilities with measurements of ozone deposition rates over the coastal Pacific Ocean.
Agnieszka Kupc, Christina J. Williamson, Anna L. Hodshire, Jan Kazil, Eric Ray, T. Paul Bui, Maximilian Dollner, Karl D. Froyd, Kathryn McKain, Andrew Rollins, Gregory P. Schill, Alexander Thames, Bernadett B. Weinzierl, Jeffrey R. Pierce, and Charles A. Brock
Atmos. Chem. Phys., 20, 15037–15060, https://doi.org/10.5194/acp-20-15037-2020, https://doi.org/10.5194/acp-20-15037-2020, 2020
Short summary
Short summary
Tropical upper troposphere over the Atlantic and Pacific oceans is a major source region of new particles. These particles are associated with the outflow from deep convection. We investigate the processes that govern the formation of these particles and their initial growth and show that none of the formation schemes commonly used in global models are consistent with observations. Using newer schemes indicates that organic compounds are likely important as nucleating and initial growth agents.
Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl
Geosci. Model Dev., 13, 4287–4303, https://doi.org/10.5194/gmd-13-4287-2020, https://doi.org/10.5194/gmd-13-4287-2020, 2020
Short summary
Short summary
Mineral dust aerosol plays an important role in the climate system. Previously, dust emissions have often been represented in global models by prescribed monthly-mean emission fields representative of a specific year. We now apply an online calculation of wind-driven dust emissions. This results in an improved agreement with observations, due to a better representation of the highly variable dust emissions. Increasing the model resolution led to an additional performance gain.
Stefanos Samaras, Christine Böckmann, Moritz Haarig, Albert Ansmann, Adrian Walser, and Bernadett Weinzierl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-459, https://doi.org/10.5194/acp-2020-459, 2020
Preprint withdrawn
Short summary
Short summary
We retrieve microphysical properties of Saharan dust particles after a long-range transport over the Atlantic Ocean to Barbados using three depolarization channels of a Raman lidar. The retrievals are performed with a spheroidal software tool by regularization. For the first time we retrieve simultaneously a shape- and size-dependent particle distribution and compare it with the polarization lidar-photometer networking method, ground-based photometer and airborne in situ particle counter data.
Sophia Brilke, Nikolaus Fölker, Thomas Müller, Konrad Kandler, Xianda Gong, Jeff Peischl, Bernadett Weinzierl, and Paul M. Winkler
Atmos. Chem. Phys., 20, 5645–5656, https://doi.org/10.5194/acp-20-5645-2020, https://doi.org/10.5194/acp-20-5645-2020, 2020
Short summary
Short summary
Atmospheric particle size distributions with the focus on freshly nucleated particles were measured during the A-LIFE field experiment in Cyprus. A DMA-train was set up for the first time in an atmospheric environment and captures the sub-10 nm particle dynamics. Several new particle formation (NPF) events are studied in detail, of which some did not show particle growth beyond 10 nm indicating that NPF may occur more frequently than estimated when the sub-10 nm size range is not covered.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Alexander B. Thames, William H. Brune, David O. Miller, Hannah M. Allen, Eric C. Apel, Donald R. Blake, T. Paul Bui, Roisin Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, Joshua P. DiGangi, James W. Elkins, Samuel R. Hall, Thomas F. Hanisco, Reem A. Hannun, Eric Hintsa, Rebecca S. Hornbrook, Michelle J. Kim, Kathryn McKain, Fred L. Moore, Julie M. Nicely, Jeffrey Peischl, Thomas B. Ryerson, Jason M. St. Clair, Colm Sweeney, Alex Teng, Chelsea R. Thompson, Kirk Ullmann, Paul O. Wennberg, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 4013–4029, https://doi.org/10.5194/acp-20-4013-2020, https://doi.org/10.5194/acp-20-4013-2020, 2020
Short summary
Short summary
Oceans and the atmosphere exchange volatile gases that react with the hydroxyl radical (OH). During a NASA airborne study, measurements of the total frequency of OH reactions, called the OH reactivity, were made in the marine boundary layer of the Atlantic and Pacific oceans. The measured OH reactivity often exceeded the OH reactivity calculated from measured chemical species. This missing OH reactivity appears to be from unmeasured volatile organic compounds coming out of the ocean.
Rebecca H. Schwantes, Louisa K. Emmons, John J. Orlando, Mary C. Barth, Geoffrey S. Tyndall, Samuel R. Hall, Kirk Ullmann, Jason M. St. Clair, Donald R. Blake, Armin Wisthaler, and Thao Paul V. Bui
Atmos. Chem. Phys., 20, 3739–3776, https://doi.org/10.5194/acp-20-3739-2020, https://doi.org/10.5194/acp-20-3739-2020, 2020
Short summary
Short summary
Ozone is a greenhouse gas and air pollutant that is harmful to human health and plants. During the summer in the southeastern US, many regional and global models are biased high for surface ozone compared to observations. Here adding more complex and updated chemistry for isoprene and terpenes, which are biogenic hydrocarbons emitted from trees and vegetation, into an earth system model greatly reduces the simulated surface ozone bias compared to aircraft and monitoring station data.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Claire L. Ryder, Eleanor J. Highwood, Adrian Walser, Petra Seibert, Anne Philipp, and Bernadett Weinzierl
Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019, https://doi.org/10.5194/acp-19-15353-2019, 2019
Short summary
Short summary
Mineral dust is lifted into the atmosphere from desert regions, where it can be transported over thousands of kilometres around the world. Dust impacts weather, climate, aviation, and air quality. We evaluate new aircraft observations of dust size. We find that the largest particles typically omitted by models have a significant impact on the interactions of dust with radiation and therefore climate. We also find that large dust particles are retained in the atmosphere longer than expected.
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Moritz Haarig, Adrian Walser, Albert Ansmann, Maximilian Dollner, Dietrich Althausen, Daniel Sauer, David Farrell, and Bernadett Weinzierl
Atmos. Chem. Phys., 19, 13773–13788, https://doi.org/10.5194/acp-19-13773-2019, https://doi.org/10.5194/acp-19-13773-2019, 2019
Short summary
Short summary
Aerosol particles are necessary in forming a cloud droplet. In order to improve studies of cloud formation, the aerosol load and type below a cloud has to be measured without disturbing the cloud. The lidar is a perfect tool for this purpose, as it provides a vertical profile of the aerosol particles from the ground. We validated the lidar retrieval of cloud-relevant aerosol properties like particle number concentrations with airborne in situ measurements in the Saharan Air Layer at Barbados.
Jeffrey S. Reid, Derek J. Posselt, Kathleen Kaku, Robert A. Holz, Gao Chen, Edwin W. Eloranta, Ralph E. Kuehn, Sarah Woods, Jianglong Zhang, Bruce Anderson, T. Paul Bui, Glenn S. Diskin, Patrick Minnis, Michael J. Newchurch, Simone Tanelli, Charles R. Trepte, K. Lee Thornhill, and Luke D. Ziemba
Atmos. Chem. Phys., 19, 11413–11442, https://doi.org/10.5194/acp-19-11413-2019, https://doi.org/10.5194/acp-19-11413-2019, 2019
Short summary
Short summary
The scientific community often focuses on the vertical transport of pollutants by clouds for those with bases at the planetary boundary layer (such as typical fair-weather cumulus) and the outflow from thunderstorms at their tops. We demonstrate complex aerosol and cloud features formed in mid-level thunderstorm outflow. These layers have strong relationships to mid-level tropospheric clouds, an important but difficult to model or monitor cloud regime for climate studies.
Jacob Schacht, Bernd Heinold, Johannes Quaas, John Backman, Ribu Cherian, Andre Ehrlich, Andreas Herber, Wan Ting Katty Huang, Yutaka Kondo, Andreas Massling, P. R. Sinha, Bernadett Weinzierl, Marco Zanatta, and Ina Tegen
Atmos. Chem. Phys., 19, 11159–11183, https://doi.org/10.5194/acp-19-11159-2019, https://doi.org/10.5194/acp-19-11159-2019, 2019
Short summary
Short summary
The Arctic is warming faster than the rest of Earth. Black carbon (BC) aerosol contributes to this Arctic amplification by direct and indirect aerosol radiative effects while distributed in air or deposited on snow and ice. The aerosol-climate model ECHAM-HAM is used to estimate direct aerosol radiative effect (DRE). Airborne and near-surface BC measurements are used to evaluate the model and give an uncertainty range for the burden and DRE of Arctic BC caused by different emission inventories.
Huisheng Bian, Karl Froyd, Daniel M. Murphy, Jack Dibb, Anton Darmenov, Mian Chin, Peter R. Colarco, Arlindo da Silva, Tom L. Kucsera, Gregory Schill, Hongbin Yu, Paul Bui, Maximilian Dollner, Bernadett Weinzierl, and Alexander Smirnov
Atmos. Chem. Phys., 19, 10773–10785, https://doi.org/10.5194/acp-19-10773-2019, https://doi.org/10.5194/acp-19-10773-2019, 2019
Short summary
Short summary
We address the GEOS-GOCART sea salt simulations constrained by NASA EVS ATom measurements, as well as those by MODIS and the AERONET MAN. The study covers remote regions over the Pacific, Atlantic, and Southern oceans from near the surface to ~ 12 km altitude and covers both summer and winter seasons. Important sea salt fields, e.g., mass mixing ratio, vertical distribution, size distribution, and marine aerosol AOD, as well as their relationship to relative humidity and emissions, are examined.
Charles A. Brock, Christina Williamson, Agnieszka Kupc, Karl D. Froyd, Frank Erdesz, Nicholas Wagner, Matthews Richardson, Joshua P. Schwarz, Ru-Shan Gao, Joseph M. Katich, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, Bernadett Weinzierl, Maximilian Dollner, ThaoPaul Bui, and Daniel M. Murphy
Atmos. Meas. Tech., 12, 3081–3099, https://doi.org/10.5194/amt-12-3081-2019, https://doi.org/10.5194/amt-12-3081-2019, 2019
Short summary
Short summary
From 2016 to 2018 a NASA aircraft profiled the atmosphere from 180 m to ~12 km from the Arctic to the Antarctic over both the Pacific and Atlantic oceans. This program, ATom, sought to sample atmospheric chemical composition to compare with global climate models. We describe the how measurements of particulate matter were made during ATom, and show that the instrument performance was excellent. Data from this project can be used with confidence to evaluate models and compare with satellites.
Ju-Mee Ryoo, Laura T. Iraci, Tomoaki Tanaka, Josette E. Marrero, Emma L. Yates, Inez Fung, Anna M. Michalak, Jovan Tadić, Warren Gore, T. Paul Bui, Jonathan M. Dean-Day, and Cecilia S. Chang
Atmos. Meas. Tech., 12, 2949–2966, https://doi.org/10.5194/amt-12-2949-2019, https://doi.org/10.5194/amt-12-2949-2019, 2019
Short summary
Short summary
We designed cylindrical flights and computed the emission fluxes using a kriging method and Gauss's theorem over Sacramento, California. Differences in wind treatment and background affect the emission estimates by a factor of 1.5 to 7. The effects of the vertical layer average and the vertical mass transfer on the emission estimates are found to be small, esp. local scale. The result also suggests a closed-shape flight profile can better contain total emissions than a one-sided curtain flight.
Daniel M. Murphy, Karl D. Froyd, Huisheng Bian, Charles A. Brock, Jack E. Dibb, Joshua P. DiGangi, Glenn Diskin, Maximillian Dollner, Agnieszka Kupc, Eric M. Scheuer, Gregory P. Schill, Bernadett Weinzierl, Christina J. Williamson, and Pengfei Yu
Atmos. Chem. Phys., 19, 4093–4104, https://doi.org/10.5194/acp-19-4093-2019, https://doi.org/10.5194/acp-19-4093-2019, 2019
Short summary
Short summary
We present the first data on the concentration of sea-salt aerosol throughout most of the depth of the troposphere and a wide range of latitudes. Sea-salt concentrations in the upper troposphere are very small. This puts stringent limits on how sea-salt aerosol affects halogen and nitric acid chemistry there. With a widely distributed source, sea-salt aerosol provides an excellent test of wet scavenging and vertical transport of aerosols in chemical transport models.
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541–579, https://doi.org/10.5194/gmd-12-541-2019, https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary
Short summary
The implementation of the aerosol microphysics submodel MADE3 into the global atmospheric chemistry model EMAC is described and evaluated against an extensive pool of observational data, focusing on aerosol mass and number concentrations, size distributions, composition, and optical properties. EMAC (MADE3) is able to reproduce main aerosol properties reasonably well, in line with the performance of other global aerosol models.
Matthias Wiegner, Ina Mattis, Margit Pattantyús-Ábrahám, Juan Antonio Bravo-Aranda, Yann Poltera, Alexander Haefele, Maxime Hervo, Ulrich Görsdorf, Ronny Leinweber, Josef Gasteiger, Martial Haeffelin, Frank Wagner, Jan Cermak, Katerina Komínková, Mike Brettle, Christoph Münkel, and Kornelia Pönitz
Atmos. Meas. Tech., 12, 471–490, https://doi.org/10.5194/amt-12-471-2019, https://doi.org/10.5194/amt-12-471-2019, 2019
Short summary
Short summary
Many ceilometers are influenced by water vapor absorption in the spectral range around 910 nm. Thus, a correction is required to retrieve aerosol optical properties. Validation of this correction scheme was performed in the framework of CeiLinEx2015 for several ceilometers with good agreement for Vaisala's CL51 ceilometer. For future applications we recommend monitoring the emitted wavelength and providing
darkmeasurements on a regular basis to be able to correct for signal artifacts.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Ka Lok Chan, Matthias Wiegner, Harald Flentje, Ina Mattis, Frank Wagner, Josef Gasteiger, and Alexander Geiß
Geosci. Model Dev., 11, 3807–3831, https://doi.org/10.5194/gmd-11-3807-2018, https://doi.org/10.5194/gmd-11-3807-2018, 2018
Short summary
Short summary
The paper presents the comparison of ECMWF-IFS model simulation of aerosol backscatter profiles to long-term measurements of an extended ceilometer network. A significant influence of the numerical description of the hygroscopic growth of sea salt aerosols on the agreement between model and observations was found. Consideration of the nonsphericity of dust particles in the model reduced the attenuated backscatter of dust by ~&thinp;30 % and improved the agreement between model and observations.
Josef Gasteiger and Matthias Wiegner
Geosci. Model Dev., 11, 2739–2762, https://doi.org/10.5194/gmd-11-2739-2018, https://doi.org/10.5194/gmd-11-2739-2018, 2018
Short summary
Short summary
A software package has been developed to model optical properties of atmospheric aerosol ensembles based on a pre-calculated single particle data set. Spherical particles, spheroids, and a small set of irregular shapes are covered. A flexible and intuitive web interface is provided for online calculations of user-defined ensembles. The paper describes the package and outlines several applications, e.g., optical properties for aerosol size bins of an aerosol transport model.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Moritz Haarig, Albert Ansmann, Josef Gasteiger, Konrad Kandler, Dietrich Althausen, Holger Baars, Martin Radenz, and David A. Farrell
Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, https://doi.org/10.5194/acp-17-14199-2017, 2017
Short summary
Short summary
The depolarization ratio and the backscatter coefficient of marine particles are correlated with the relative humidity. The measurements were performed under atmospheric conditions with a multi-wavelength lidar system in pure marine conditions over Barbados in February 2014. For RH < 50 % the sea salt particles have a cubic-like shape resulting in an enhanced depolarization ratio of up to 0.15. This agrees with model results of cubic sea salt. The extinction enhancement f(RH) factor was derived.
Adrian Walser, Daniel Sauer, Antonio Spanu, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Meas. Tech., 10, 4341–4361, https://doi.org/10.5194/amt-10-4341-2017, https://doi.org/10.5194/amt-10-4341-2017, 2017
Short summary
Short summary
We present a new approach to model the response of optical particle counters (OPCs) including a simple parametrization for artificial broadening of size spectra induced by the non-ideal behavior of real OPCs. We show a self-consistent way to evaluate calibration measurements and outline how particle number size distributions with realistic uncertainty estimates can be derived. The innovations will improve the accuracy of OPC-derived size distributions and allow to assess their precision.
Jean-Christophe Raut, Louis Marelle, Jerome D. Fast, Jennie L. Thomas, Bernadett Weinzierl, Katharine S. Law, Larry K. Berg, Anke Roiger, Richard C. Easter, Katharina Heimerl, Tatsuo Onishi, Julien Delanoë, and Hans Schlager
Atmos. Chem. Phys., 17, 10969–10995, https://doi.org/10.5194/acp-17-10969-2017, https://doi.org/10.5194/acp-17-10969-2017, 2017
Short summary
Short summary
We study the cross-polar transport of plumes from Siberian fires to the Arctic in summer, both in terms of transport pathways and efficiency of deposition processes. Those plumes containing soot may originate from anthropogenic and biomass burning sources in mid-latitude regions and may impact the Arctic climate by depositing on snow and ice surfaces. We evaluate the role of the respective source contributions, investigate the transport of plumes and treat pathway-dependent removal of particles.
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Robert L. Herman, Eric A. Ray, Karen H. Rosenlof, Kristopher M. Bedka, Michael J. Schwartz, William G. Read, Robert F. Troy, Keith Chin, Lance E. Christensen, Dejian Fu, Robert A. Stachnik, T. Paul Bui, and Jonathan M. Dean-Day
Atmos. Chem. Phys., 17, 6113–6124, https://doi.org/10.5194/acp-17-6113-2017, https://doi.org/10.5194/acp-17-6113-2017, 2017
Short summary
Short summary
This study reports new aircraft field observations of elevated water vapor greater than 10 ppmv in the overworld stratosphere over the summertime continental US. Back trajectories from the flight track intersect overshooting convective tops within the previous 1 to 7 days, suggesting that ice is convectively and irreversibly transported to the stratosphere in the most energetic overshooting convective events. Satellite measurements (Aura MLS) indicate that such events are uncommon (< 1 %).
Josef Gasteiger, Silke Groß, Daniel Sauer, Moritz Haarig, Albert Ansmann, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 297–311, https://doi.org/10.5194/acp-17-297-2017, https://doi.org/10.5194/acp-17-297-2017, 2017
Short summary
Short summary
To study aerosol transport in the Saharan Air Layer (SAL) from Africa to the Caribbean, we combine advanced optical models of Saharan aerosols with Stokes settling and two hypotheses about the occurrence of vertical mixing. By testing our hypotheses with lidar and in situ profiles measured near the top of the transported SAL, we find strong evidence that vertical mixing occurs in the SAL over the Atlantic with significant consequences for size distribution of the transported Saharan aerosols.
Valery Shcherbakov, Olivier Jourdan, Christiane Voigt, Jean-Francois Gayet, Aurélien Chauvigne, Alfons Schwarzenboeck, Andreas Minikin, Marcus Klingebiel, Ralf Weigel, Stephan Borrmann, Tina Jurkat, Stefan Kaufmann, Romy Schlage, Christophe Gourbeyre, Guy Febvre, Tatyana Lapyonok, Wiebke Frey, Sergej Molleker, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 11883–11897, https://doi.org/10.5194/acp-16-11883-2016, https://doi.org/10.5194/acp-16-11883-2016, 2016
Fernando Chouza, Oliver Reitebuch, Angela Benedetti, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 11581–11600, https://doi.org/10.5194/acp-16-11581-2016, https://doi.org/10.5194/acp-16-11581-2016, 2016
Andrew W. Rollins, Troy D. Thornberry, Steven J. Ciciora, Richard J. McLaughlin, Laurel A. Watts, Thomas F. Hanisco, Esther Baumann, Fabrizio R. Giorgetta, Thaopaul V. Bui, David W. Fahey, and Ru-Shan Gao
Atmos. Meas. Tech., 9, 4601–4613, https://doi.org/10.5194/amt-9-4601-2016, https://doi.org/10.5194/amt-9-4601-2016, 2016
Short summary
Short summary
In situ measurements of SO2 in the tropical UT–LS have been scarce, in part due to limitations of existing instrumentation. Here we present a new laser-induced fluorescence instrument capable of measuring SO2 in the UT–LS region at single part-per-trillion (ppt) mixing ratios and demonstrate it on the NASA WB-57F aircraft up to 19.7 km altitude.
Silke Groß, Josef Gasteiger, Volker Freudenthaler, Thomas Müller, Daniel Sauer, Carlos Toledano, and Albert Ansmann
Atmos. Chem. Phys., 16, 11535–11546, https://doi.org/10.5194/acp-16-11535-2016, https://doi.org/10.5194/acp-16-11535-2016, 2016
Short summary
Short summary
Dual-wavelength depolarization sensitive Raman lidar measurements were used to characterize the optical properties of the dust loaded convective boundary layer over the Caribbean. Furthermore we derived the dust volume fraction and dust mass concentration within the convective boundary layer.
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary
Short summary
libradtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. This paper gives an overview of libradtran version 2.0 with focus on new features (e.g. polarization, Raman scattering, absorption parameterization, cloud and aerosol optical properties). libRadtran is freely available at http://www.libradtran.org.
Fernando Chouza, Oliver Reitebuch, Michael Jähn, Stephan Rahm, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 4675–4692, https://doi.org/10.5194/acp-16-4675-2016, https://doi.org/10.5194/acp-16-4675-2016, 2016
Short summary
Short summary
This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL). First, the instrumental corrections required for the retrieval vertical wind measurements from an airborne DWL are presented. Then, the method is applied to two case studies to determine, in combination with numerical models and in situ measurements, the main characteristics of the observed waves.
Louis Marelle, Jennie L. Thomas, Jean-Christophe Raut, Kathy S. Law, Jukka-Pekka Jalkanen, Lasse Johansson, Anke Roiger, Hans Schlager, Jin Kim, Anja Reiter, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 2359–2379, https://doi.org/10.5194/acp-16-2359-2016, https://doi.org/10.5194/acp-16-2359-2016, 2016
S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl
Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, https://doi.org/10.5194/acp-15-11067-2015, 2015
Short summary
Short summary
In June and July 2013 dual-wavelength lidar measurements were performed in Barbados to study long-range transported Saharan dust across the Atlantic Ocean and investigate transport-induced changes. The focus of our measurements is the intensive optical properties, the lidar ratio and the particle linear depolarization ratio. While the lidar ratio shows no differences compared to the values of fresh Saharan dust, the particle linear depolarization ratio shows slight differences.
M. Wiegner and J. Gasteiger
Atmos. Meas. Tech., 8, 3971–3984, https://doi.org/10.5194/amt-8-3971-2015, https://doi.org/10.5194/amt-8-3971-2015, 2015
Short summary
Short summary
For the past few years a large number of autonomous continuously operating single-wavelength backscatter lidars, so called ceilometers, have been installed. Currently the assessment of their potential for aerosol remote sensing is a major research topic. This paper focusses on the need to consider water vapor
absorption if ceilometers emitting at wavelengths in the 905 to 910 nm range are used and proposes a correction scheme to improve the retrieval of the aerosol backscatter coefficient.
N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, and J. Polo
Atmos. Meas. Tech., 8, 3467–3480, https://doi.org/10.5194/amt-8-3467-2015, https://doi.org/10.5194/amt-8-3467-2015, 2015
F. Chouza, O. Reitebuch, S. Groß, S. Rahm, V. Freudenthaler, C. Toledano, and B. Weinzierl
Atmos. Meas. Tech., 8, 2909–2926, https://doi.org/10.5194/amt-8-2909-2015, https://doi.org/10.5194/amt-8-2909-2015, 2015
P. Koepke, J. Gasteiger, and M. Hess
Atmos. Chem. Phys., 15, 5947–5956, https://doi.org/10.5194/acp-15-5947-2015, https://doi.org/10.5194/acp-15-5947-2015, 2015
Short summary
Short summary
Desert dust particles in general are not spherical, which changes their scattering functions against that for spheres that often are used for remote-sensing and radiation budget investigations. In the new version of the data base OPAC (Optical Properties of Aerosols and Clouds), which easily allows one to model a large range of microphysical and optical aerosol properties for individually decided component mixtures, now typical non-spherical mineral particles are taken into account.
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
B. C. Kindel, P. Pilewskie, K. S. Schmidt, T. Thornberry, A. Rollins, and T. Bui
Atmos. Meas. Tech., 8, 1147–1156, https://doi.org/10.5194/amt-8-1147-2015, https://doi.org/10.5194/amt-8-1147-2015, 2015
Short summary
Short summary
Measurements of upper tropospheric-lower stratospheric water vapor amounts in the tropics were made using the 1400 and 1900nm water vapor bands present in airborne solar spectral irradiance data. These were validated with radiative transfer modeling using in situ profiles of water vapor, temperature, and pressure. An approach to extending these types of measurements from aircraft altitudes to the top of the atmosphere to infer stratospheric water vapor amount is outlined.
J. Gasteiger and V. Freudenthaler
Atmos. Meas. Tech., 7, 3773–3781, https://doi.org/10.5194/amt-7-3773-2014, https://doi.org/10.5194/amt-7-3773-2014, 2014
M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas
Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, https://doi.org/10.5194/amt-7-1979-2014, 2014
F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, C. Voigt, and B. Weinzierl
Atmos. Chem. Phys., 14, 6111–6137, https://doi.org/10.5194/acp-14-6111-2014, https://doi.org/10.5194/acp-14-6111-2014, 2014
S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold
Atmos. Chem. Phys., 13, 2487–2505, https://doi.org/10.5194/acp-13-2487-2013, https://doi.org/10.5194/acp-13-2487-2013, 2013
M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel
Atmos. Meas. Tech., 5, 3077–3097, https://doi.org/10.5194/amt-5-3077-2012, https://doi.org/10.5194/amt-5-3077-2012, 2012
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Fast and sensitive measurements of sub-3 nm particles using Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM)
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Deriving the hygroscopicity of ambient particles using low-cost optical particle counters
Simulations of the collection of mesospheric dust particles with a rocket instrument
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Use of an uncrewed aerial system to investigate aerosol direct and indirect radiative forcing effects in the marine atmosphere
Characterization of the airborne aerosol inlet and transport system used during the A-LIFE aircraft field experiment
Large-scale automated emission measurement of individual vehicles with point sampling
Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
Modular Multiplatform Compatible Air Measurement System (MoMuCAMS): a new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments
Two new multirotor uncrewed aerial vehicles (UAVs) for glaciogenic cloud seeding and aerosol measurements within the CLOUDLAB project
Real-time pollen identification using holographic imaging and fluorescence measurements
Assessing potential indicators of aerosol wet scavenging during long-range transport
Next-generation ice-nucleating particle sampling on board aircraft: characterization of the High-volume flow aERosol particle filter sAmpler (HERA)
Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
The four-wavelength Photoacoustic Aerosol Absorption Spectrometer (PAAS-4λ)
Improved counting statistics of an ultrafine differential mobility particle size spectrometer system
Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
Source apportionment of black carbon and combustion-related CO2 for the determination of source-specific emission factors
CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
New method to determine black carbon mass size distribution
The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
A study on the performance of low-cost sensors for source apportionment at an urban background site
A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performance
A high-transmission axial ion mobility classifier for mass–mobility measurements of atmospheric ions
Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques
An instrument for direct measurement of emissions: cooling tower example
The Aerosol Research Observation Station (AEROS)
Laser imaging nephelometer for aircraft deployment
A new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by thermal desorption aerosol mass spectrometry
Evaluating the PurpleAir monitor as an aerosol light scattering instrument
Undersizing of aged African biomass burning aerosol by an ultra-high-sensitivity aerosol spectrometer
Evaluation methods for low-cost particulate matter sensors
Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research
Development of an in situ dual-channel thermal desorption gas chromatography instrument for consistent quantification of volatile, intermediate-volatility and semivolatile organic compounds
Assessment of online water-soluble brown carbon measuring systems for aircraft sampling
Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone
A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – Part 3: Automation and design improvements
Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS)
Detection of ship plumes from residual fuel operation in emission control areas using single-particle mass spectrometry
Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer
Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation
Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies
A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol
A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): development and field characterization
A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results
Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise
Darren Cheng, Stavros Amanatidis, Gregory S. Lewis, and Coty N. Jen
Atmos. Meas. Tech., 18, 197–210, https://doi.org/10.5194/amt-18-197-2025, https://doi.org/10.5194/amt-18-197-2025, 2025
Short summary
Short summary
This study describes a new method, the Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM), to measure sub-3 nm size distribution at high time resolution and sensitivity. The CPC FARM is compared to traditionally used particle mobility sizers during a new particle formation campaign to study rapidly changing sub-3 nm particles in Pittsburgh, PA.
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech., 17, 6791–6805, https://doi.org/10.5194/amt-17-6791-2024, https://doi.org/10.5194/amt-17-6791-2024, 2024
Short summary
Short summary
This study explores the effectiveness of the Horiba PX-375 monitor for analysing the elemental composition of airborne particulate matter (PM). Understanding this composition of PM is important for identifying its sources, assessing potential health risks, and developing strategies to reduce air pollution. The PX-375 monitor proved to be a valuable tool for ongoing air quality monitoring studies and could be particularly useful as pollution levels and sources change in the future.
Wei-Chieh Huang, Hui-Ming Hung, Ching-Wei Chu, Wei-Chun Hwang, and Shih-Chun Candice Lung
Atmos. Meas. Tech., 17, 6073–6084, https://doi.org/10.5194/amt-17-6073-2024, https://doi.org/10.5194/amt-17-6073-2024, 2024
Short summary
Short summary
This study investigates aerosol properties crucial for health, cloud formation, and climate impact. Employing a low-cost sensor system, we assess hygroscopicity of particulate matter (PM) and the ability to influence cloud formation to improve the reported PM concentrations from low-cost sensors. The study introduces an alternate methodology for assessing aerosol hygroscopicity, offering insights into atmospheric science, air quality, and cloud dynamics.
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, James E. Johnson, and Lucia M. Upchurch
Atmos. Meas. Tech., 17, 3157–3170, https://doi.org/10.5194/amt-17-3157-2024, https://doi.org/10.5194/amt-17-3157-2024, 2024
Short summary
Short summary
An uncrewed aerial observing system has been developed for the measurement of vertical profiles of aerosol and cloud properties that affect Earth's radiation balance. The system was successfully deployed from a ship and from a coastal site and flown autonomously up to 3050 m and for 4.5 h. These results indicate the potential of the observing system to make routine, operational flights from ships and land to characterize aerosol interactions with radiation and clouds.
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024, https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Short summary
Transporting a representative aerosol sample to instrumentation inside a research aircraft remains a challenge due to losses or enhancements of particles in the aerosol sampling system. Here, we present sampling efficiencies and the cutoff diameter for the DLR Falcon aerosol sampling system as a function of true airspeed by comparing the in-cabin and the out-cabin particle number size distributions observed during the A-LIFE aircraft mission.
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024, https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary
Short summary
Exhaust emissions from combustion-based vehicles are negatively affecting human health and our environment. In particular, a small share (< 20 %) of poorly maintained or tampered vehicles are responsible for the majority (60 %–90 %) of traffic-related emissions. The emissions from vehicles are currently not properly monitored during their lifetime. We present a roadside measurement technique, called
point sampling, which can be used to monitor vehicle emissions throughout their life cycle.
Claudio Crazzolara and Andreas Held
Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024, https://doi.org/10.5194/amt-17-2183-2024, 2024
Short summary
Short summary
Our paper describes the development of a collection device that can be used to collect airborne dust particles classified according to their size. This collection device is optimized for a special analysis method based on X-ray fluorescence so that particles can be collected from the air and analyzed with high sensitivity. This enables the determination of the content of heavy metals in the airborne particle fraction, which are of health-relevant significance.
Roman Pohorsky, Andrea Baccarini, Julie Tolu, Lenny H. E. Winkel, and Julia Schmale
Atmos. Meas. Tech., 17, 731–754, https://doi.org/10.5194/amt-17-731-2024, https://doi.org/10.5194/amt-17-731-2024, 2024
Short summary
Short summary
This manuscript presents a new tethered-balloon-based platform for in situ vertical measurements of aerosols and trace gases in the lower atmosphere of polar and alpine regions. The system can host various instrumental setups to target different research questions and features new instruments, in particular a miniaturized scanning electrical mobility spectrometer, deployed for the first time in a tethered balloon.
Anna J. Miller, Fabiola Ramelli, Christopher Fuchs, Nadja Omanovic, Robert Spirig, Huiying Zhang, Ulrike Lohmann, Zamin A. Kanji, and Jan Henneberger
Atmos. Meas. Tech., 17, 601–625, https://doi.org/10.5194/amt-17-601-2024, https://doi.org/10.5194/amt-17-601-2024, 2024
Short summary
Short summary
We present a method for aerosol and cloud research using two uncrewed aerial vehicles (UAVs). The UAVs have a propeller heating mechanism that allows flights in icing conditions, which has so far been a limitation for cloud research with UAVs. One UAV burns seeding flares, producing a plume of particles that causes ice formation in supercooled clouds. The second UAV measures aerosol size distributions and is used for measuring the seeding plume or for characterizing the boundary layer.
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024, https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Sarah Grawe, Conrad Jentzsch, Jonas Schaefer, Heike Wex, Stephan Mertes, and Frank Stratmann
Atmos. Meas. Tech., 16, 4551–4570, https://doi.org/10.5194/amt-16-4551-2023, https://doi.org/10.5194/amt-16-4551-2023, 2023
Short summary
Short summary
Measurements of ice-nucleating particle (INP) concentrations are valuable for the simulation of cloud properties. In recent years, filter sampling in combination with offline INP measurements has become increasingly popular. However, most sampling is ground-based, and the vertical transport of INPs is not well quantified. The High-volume flow aERosol particle filter sAmpler (HERA) for applications on board aircraft was developed to expand the sparse dataset of INP concentrations at cloud level.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Dominik Stolzenburg, Tiia Laurila, Pasi Aalto, Joonas Vanhanen, Tuukka Petäjä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 2471–2483, https://doi.org/10.5194/amt-16-2471-2023, https://doi.org/10.5194/amt-16-2471-2023, 2023
Short summary
Short summary
Size-distribution measurements of ultrafine particles are of special interest as they can be used to estimate the atmospheric significance of new particle formation, a process which is thought to influence the global climate. Here we show that improved counting statistics in size-distribution measurements through the usage of higher sampling flows can significantly reduce the uncertainties in such calculations.
Kamaljeet Kaur and Kerry E. Kelly
Atmos. Meas. Tech., 16, 2455–2470, https://doi.org/10.5194/amt-16-2455-2023, https://doi.org/10.5194/amt-16-2455-2023, 2023
Short summary
Short summary
We evaluated the AlphaSense OPC-N3 and PMS5003 compared to federal equivalent method (FEM) PM10 measurements in the Salt Lake Valley during five dust events. Before correction, the OPC-N3 agreed well, but the PMS PM10 measurements correlated poorly with the FEM. After correcting the PMS with a PM2.5 / PM10 ratio-based factor, the PMS PM10 correlations improved significantly. This suggests the possibility of better resolved spatial estimates of PM10 using PMS measurements and PM2.5 / PM10 ratios.
Balint Alfoldy, Asta Gregorič, Matic Ivančič, Irena Ježek, and Martin Rigler
Atmos. Meas. Tech., 16, 135–152, https://doi.org/10.5194/amt-16-135-2023, https://doi.org/10.5194/amt-16-135-2023, 2023
Short summary
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022, https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Short summary
Tethered balloon observations are highly valuable for aerosol studies in the lowest part of the atmosphere. This study presents a newly developed platform called CAMP with four aerosol instruments for balloon-borne measurements in the Arctic. Laboratory characterizations and evaluations of the instruments and results of a first field deployment are shown. A case study highlights CAMP's capabilities and the importance of airborne aerosol studies for interpretation of ground-based observations.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Antonis Dragoneas, Sergej Molleker, Oliver Appel, Andreas Hünig, Thomas Böttger, Markus Hermann, Frank Drewnick, Johannes Schneider, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 15, 5719–5742, https://doi.org/10.5194/amt-15-5719-2022, https://doi.org/10.5194/amt-15-5719-2022, 2022
Short summary
Short summary
The ERICA is a specially designed aerosol particle mass spectrometer for in situ, real-time chemical composition analysis of aerosols. It can operate completely autonomously, in the absence of an instrument operator. Its design has enabled its operation under harsh conditions, like those experienced in the upper troposphere and lower stratosphere, aboard unpressurized high-altitude research aircraft. The instrument has successfully participated in several aircraft operations around the world.
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022, https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Markus Leiminger, Lukas Fischer, Sophia Brilke, Julian Resch, Paul Martin Winkler, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 15, 3705–3720, https://doi.org/10.5194/amt-15-3705-2022, https://doi.org/10.5194/amt-15-3705-2022, 2022
Short summary
Short summary
We developed an axial ion mobility classifier coupled to an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer to measure size-segregated atmospheric ions. We characterize the performance of the novel instrument with bipolar-electrospray-generated ion mobility standards and compare the results with CFD simulations and a simplified numerical particle-tracking model. Ultimately, we report first mass–mobility measurements of atmospheric ions in Innsbruck, Austria.
Andreas Hünig, Oliver Appel, Antonis Dragoneas, Sergej Molleker, Hans-Christian Clemen, Frank Helleis, Thomas Klimach, Franziska Köllner, Thomas Böttger, Frank Drewnick, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 15, 2889–2921, https://doi.org/10.5194/amt-15-2889-2022, https://doi.org/10.5194/amt-15-2889-2022, 2022
Short summary
Short summary
We have serially combined the two well-established methods for in situ real-time measurement of fine particle chemical composition, the single-particle laser ablation method and the flash evaporation with electron impact ionization method, into a novel instrument. Here we present the design; instrument characteristics, as derived from laboratory and field measurements; and results from the first field deployment during the 2017 StratoClim aircraft campaign.
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022, https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
Short summary
Measuring emissions from stacks requires techniques to address a broad range of conditions and measurement challenges. Here we describe an instrument package held by a crane above a stack to characterize both wet droplet and dried aerosol emissions from cooling tower spray drift in situ. The instrument package characterizes the velocity, size distribution, and concentration of the wet droplet emissions and the mass concentration and elemental composition of the dried PM2.5 and PM10 emissions.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Adam T. Ahern, Frank Erdesz, Nicholas L. Wagner, Charles A. Brock, Ming Lyu, Kyra Slovacek, Richard H. Moore, Elizabeth B. Wiggins, and Daniel M. Murphy
Atmos. Meas. Tech., 15, 1093–1105, https://doi.org/10.5194/amt-15-1093-2022, https://doi.org/10.5194/amt-15-1093-2022, 2022
Short summary
Short summary
Particles in the atmosphere play a significant role in climate change by scattering light back into space, reducing the amount of energy available to be absorbed by greenhouse gases. We built a new instrument to measure what direction light is scattered by particles, e.g., wildfire smoke. This is important because, depending on the angle of the sun, some particles scatter light into space (cooling the planet), but some light is also scattered towards the Earth (not cooling the planet).
Yuya Kobayashi and Nobuyuki Takegawa
Atmos. Meas. Tech., 15, 833–844, https://doi.org/10.5194/amt-15-833-2022, https://doi.org/10.5194/amt-15-833-2022, 2022
Short summary
Short summary
We propose a new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by using a refractory aerosol thermal desorption mass spectrometer (rTDMS). The combination of a graphite particle collector and a carbon dioxide laser enables high desorption temperature. Laboratory experiments showed that major ion signals originating from sodium or potassium salts were clearly detected, associated with the increase in the desorption temperature by laser heating.
James R. Ouimette, William C. Malm, Bret A. Schichtel, Patrick J. Sheridan, Elisabeth Andrews, John A. Ogren, and W. Patrick Arnott
Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022, https://doi.org/10.5194/amt-15-655-2022, 2022
Short summary
Short summary
We show that the low-cost PurpleAir sensor can be characterized as a cell-reciprocal nephelometer. At two very different locations (Mauna Loa Observatory in Hawaii and the Table Mountain rural site in Colorado), the PurpleAir measurements are highly correlated with the submicrometer aerosol scattering coefficient measured by a research-grade integrating nephelometer. These results imply that, with care, PurpleAir data may be used to evaluate climate and air quality models.
Steven G. Howell, Steffen Freitag, Amie Dobracki, Nikolai Smirnow, and Arthur J. Sedlacek III
Atmos. Meas. Tech., 14, 7381–7404, https://doi.org/10.5194/amt-14-7381-2021, https://doi.org/10.5194/amt-14-7381-2021, 2021
Short summary
Short summary
Small particles in the air have important effects on visibility, clouds, and human health. For the ORACLES project we got a new particle sizing instrument that is fast, works over the most important particle sizes, and avoids some of the issues that plague other optical particle sizers. Unfortunately it sees some particles much smaller than they really are, likely because they heat up and evaporate. We show a crude correction and speculate why these particles heat up much more than expected.
Jeffrey K. Bean
Atmos. Meas. Tech., 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, https://doi.org/10.5194/amt-14-7369-2021, 2021
Short summary
Short summary
Understanding and improving the quality of data generated from low-cost air quality sensors are crucial steps in using these sensors. This work investigates how averaging time, choice of reference instrument, and the observation of higher pollutant concentrations can impact the perceived performance of low-cost sensors in an evaluation. The influence of these factors should be considered when comparing one sensor to another or determining if a sensor can produce data that fit a specific need.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Candice L. Sirmollo, Don R. Collins, Jordan M. McCormick, Cassandra F. Milan, Matthew H. Erickson, James H. Flynn, Rebecca J. Sheesley, Sascha Usenko, Henry W. Wallace, Alexander A. T. Bui, Robert J. Griffin, Matthew Tezak, Sean M. Kinahan, and Joshua L. Santarpia
Atmos. Meas. Tech., 14, 3351–3370, https://doi.org/10.5194/amt-14-3351-2021, https://doi.org/10.5194/amt-14-3351-2021, 2021
Short summary
Short summary
The newly developed portable 1 m3 CAGE chamber systems were characterized using data acquired during a 2-month field study in 2016 in a forested area north of Houston, TX, USA. Concentrations of several oxidant and organic compounds measured in the chamber were found to closely agree with those calculated with a zero-dimensional model. By tracking the modes of injected monodisperse particles, a pattern change was observed for hourly averaged growth rates between late summer and early fall.
Ningjin Xu and Don R. Collins
Atmos. Meas. Tech., 14, 2891–2906, https://doi.org/10.5194/amt-14-2891-2021, https://doi.org/10.5194/amt-14-2891-2021, 2021
Short summary
Short summary
Oxidation flow reactors (OFRs) are frequently used to study atmospheric chemistry and aerosol formation by accelerating by up to 10 000 times the reactions that can take hours, days, or even weeks in the atmosphere. Here we present the design and evaluation of a new all-Teflon OFR. The computational, laboratory, and field use data we present demonstrate that the PFA OFR is suitable for a range of applications, including the study of rapidly changing ambient concentrations.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Rob L. Modini, Joel C. Corbin, Benjamin T. Brem, Martin Irwin, Michele Bertò, Rosaria E. Pileci, Prodromos Fetfatzis, Kostas Eleftheriadis, Bas Henzing, Marcel M. Moerman, Fengshan Liu, Thomas Müller, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 819–851, https://doi.org/10.5194/amt-14-819-2021, https://doi.org/10.5194/amt-14-819-2021, 2021
Short summary
Short summary
Extinction-minus-scattering is an important method for measuring aerosol light absorption, but its application in the field presents a number of challenges. A recently developed instrument based on this method – the CAPS PMssa – has the potential to overcome some of these challenges. We present a compilation of theory, lab measurements, and field examples to characterize this instrument and show the conditions under which it can deliver reliable absorption measurements for atmospheric aerosols.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
Short summary
Short summary
First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Cited articles
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional
Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989. a
Barlow, J., Rae, W., and Pope, A.: Wind Tunnel Testing, 3rd edition, John Wiley
& Sons, New York, US, 1999. a
Barsotti, S., Bignami, C., Buongiorno, M., Corradini, S., Doumaz, F.,
Guerrieri, L., Merucci, L., Musacchio, M., Nannipieri, L., Neri, A., Piscini,
A., Silvestri, M., Spanu, A., Spinetti, C., Stramondo, S., and Wegmuller, U.:
SAFER Response to Eyjafjallajökull and Merapi Volcanic Eruptions, in: Let's
embrace space, Space Research achievements under the 7th Framework Programme,
212–222, https://doi.org/10.2769/1549, 2011. a
Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The
cloud, aerosol and precipitation spectrometer: a new instrument for cloud
investigations, Atmos. Res., 59, 251–264,
https://doi.org/10.1016/S0169-8095(01)00119-3, 2001. a, b
Baumgardner, D., Newton, R., Krämer, M., Meyer, J., Beyer, A., Wendisch, M.,
and Vochezer, P.: The Cloud Particle Spectrom-eter with Polarization
Detection (CPSPD): A next generation open-path cloud probe for distinguishing
liquid cloud droplets from ice crystals, Atmos. Res., 142, 2–14,
https://doi.org/10.1016/j.atmosres.2013.12.010, 2014. a
Belyaev, S. and Levin, L.: Techniques for collection of representative aerosol
samples, J. Aerosol Sci., 5, 325–338, https://doi.org/10.1016/0021-8502(74)90130-X,
1974. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools,
available at: https://www.drdobbs.com/open-source/the-opencv-library/184404319# (last access: 1 April 2020),
2000. a
Bögel, W. and Baumann, R.: Test and Calibration of the DLR Falcon Wind
Measuring System by Maneuvers, J. Atmos. Ocean. Tech., 8, 5–18,
https://doi.org/10.1175/1520-0426(1991)008<0005:TACOTD>2.0.CO;2, 1991. a, b
Chan, K. R., Dean-Day, J., Bowen, S. W., and Bui, T. P.: Turbulence
measurements by the DC-8 meteorological measurement system, Geophys. Res.
Lett., 25, 1355–1358, https://doi.org/10.1029/97GL03590, 1998. a
Clark, M. M.: Drop breakup in a turbulent flow – I. Conceptual and modeling
considerations, Chem. Eng. Sci., 43, 671–679,
https://doi.org/10.1016/0009-2509(88)87025-8, 1988. a
Clift, R., Grace, J. R., and Weber, M. E.: Bubbles, Drops, and Particles,
Academic Press, New York, US, 1978. a
Craig, L., Moharreri, A., Rogers, D. C., Anderson, B., and Dhaniyala, S.:
Aircraft-Based Aerosol Sampling in Clouds: Performance
Characterization of Flow-Restriction Aerosol Inlets, J. Atmos.
Ocean. Tech., 31, 2512–2521, https://doi.org/10.1175/JTECH-D-14-00022.1, 2014. a
Cruette, D., Marillier, A., Dufresne, J. L., Grandpeix, J. Y., Nacass, P., and
Bellec, H.: Fast Temperature and True Airspeed Measurements with the Airborne
Ultrasonic Anemometer–Thermometer (AUSAT), J. Atmos. Ocean. Tech., 17,
1020–1039, https://doi.org/10.1175/1520-0426(2000)017<1020:FTATAM>2.0.CO;2, 2000. a
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting
global atmospheric ice nuclei distributions and their impacts on climate,
P. Natl. Acad. Sci. USA, 107, 11217–11222,
https://doi.org/10.1073/pnas.0910818107, 2010. a
Drummond, A. M. and MacPherson, J. I.: Aircraft Flow Effects on Cloud Drop
Images and Concentrations Measured by the NAE Twin Otter, J. Atmos. Ocean.
Tech., 2, 633–643, https://doi.org/10.1175/1520-0426(1985)002<0633:AFEOCD>2.0.CO;2,
1985. a
Elghobashi, S.: Particle-Laden Turbulent Flows: Direct Numerical Simulation
and Closure Models, Appl. Sci. Res., 48, 301–314, https://doi.org/10.1007/BF02008202,
1991. a
Garcia-Magariño, A., Sor, S., and Velazquez, A.: Droplet Breakup Criterion in
Airfoils Leading Edge Vicinity, J. Aircraft, 55, 1867–1876,
https://doi.org/10.2514/1.C034631, 2018. a, b
Hayman, M., McMenamin, K. J., and Jensen, J. B.: Response Time Characteristics
of the Fast-2D Optical Array Probe Detector Board, J. Atmos. Ocean. Tech.,
33, 2569–2583, https://doi.org/10.1175/JTECH-D-16-0062.1, 2016. a
Hinds, W. C.: Aerosol technology: properties, behavior, and measurement of
airborne particles, John Wiley & Sons, New York, US, 1999. a
Howarth, L.: The Scientific Papers of G. I. Taylor. Vol. III. Aerodynamics and
the Mechanics of Projectiles and Explosions, J. Fluid Mech., 17, 633–636,
https://doi.org/10.1017/S0022112063241554, 1963. a
Hsiang, L.-P. and Faeth, G.: Near-limit drop deformation and secondary breakup,
Int. J. Multiph. Flow, 18, 635–652, https://doi.org/10.1016/0301-9322(92)90036-G,
1992. a
Ibrahim, E. A., Yang, H. Q., and Przekwas, A. J.: Modeling of spray droplets
deformation and breakup, J. Propul. Power, 9, 651–654,
https://doi.org/10.2514/3.23672, 1993. a
Israel, R. and Rosner, D. E.: Use of a Generalized Stokes Number to Determine
the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a
Compressible Gas Flow, Aerosol Sci. Tech., 2, 45–51,
https://doi.org/10.1080/02786828308958612, 1982. a, b
Johnson, C.: Streamline diffusion finite-element method for compressible and
incompressible fluid flow, in: Finite Elements in Fluids, edited by:
Chung, T. J., 8, 75–96, 1992. a
Jung, S., Tiwari, M. K., Doan, N. V., and Poulikakos, D.: Mechanism of
supercooled droplet freezing on surfaces, Nat. Commun., 3, 615, https://doi.org/10.1038/ncomms1630, 2012. a
Kalogiros, J. A. and Wang, Q.: Aerodynamic Effects on Wind Turbulence
Measurements with Research Aircraft, J. Atmos. Ocean. Tech., 19,
1567–1576, https://doi.org/10.1175/1520-0426(2002)019<1567:AEOWTM>2.0.CO;2, 2002. a
Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H., Jäckel, S.,
Jaenicke, R., Knippertz, P., Lieke, K., Massling, A., Petzold, A., Schladitz,
A., Weinzierl, B., Wiedensohler, A., Zorn, S., and Weinbruch, S.: Size
distribution, mass concentration, chemical and mineralogical composition and
derived optical parameters of the boundary layer aerosol at Tinfou, Morocco,
during SAMUM 2006, Tellus B, 61, 32–50,
https://doi.org/10.1111/j.1600-0889.2008.00385.x, 2009. a
Kennedy, J. and Roberts, J.: Rain Ingestion in a Gas Turbine Engine, 4th
ILASS-Americas Conference, Hartford, US, 21–23 May 1990. a
King, W. D., Turvey, D., Williams, D., and Llewellyn, D.: Air flow and particle
trajectories around aircraft fuselages. II: Measurements, J. Atmos. Ocean.
Tech., 1, 14–21, https://doi.org/10.1175/1520-0426(1984)001<0014:AFAPTA>2.0.CO;2,
1984. a
Knollenberg, R.: Techniques for probing cloud microstructure, in: Clouds their
Formation, Optical Properties, and Effects, edited by: Hobbs, P. V. and
Deepak, A., Academic Press, New York, US, 15–91,
https://doi.org/10.1016/b978-0-12-350720-4.50007-7, 1981. a
Knollenberg, R. G.: The Optical Array: An Alternative to Scattering or
Extinction for Airborne Particle Size Determination, J. Appl. Meteorol., 9,
86–103, https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2, 1970. a
Knollenberg, R. G.: Three New Instruments for Cloud Physics Measurements: The
2-D Spectrometer, the Forward Scattering Spectrometer Probe, and the Active
Scattering Aerosol Spectrometer, in: Proc. Intern. Cloud Physics Conf.,
Boulder, US, 26–30 June 1976, 554–561, 1976. a
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling effect
estimated from analysis of dust size and abundance, Nat. Geosci., 10,
274–278, https://doi.org/10.1038/ngeo2912, 2017. a
Korolev, A.: Reconstruction of the Sizes of Spherical Particles from Their
Shadow Images. Part I: Theoretical Considerations, J. Atmos. Ocean. Tech.,
24, 376–389, https://doi.org/10.1175/JTECH1980.1, 2007. a
Korolev, A. and Isaac, G.: Shattering During Sampling by OAPs and HVPS. Part I:
Snow Particles, J. Atmos. Ocean. Tech., 22, 528–542,
https://doi.org/10.1175/JTECH1720.1, 2005. a
Korolev, A., Emery, E., and Creelman, K.: Modification and Tests of
Particle Probe Tips to Mitigate Effects of Ice Shattering, J.
Atmos. Ocean. Tech., 30, 690–708, https://doi.org/10.1175/JTECH-D-12-00142.1, 2013. a
Korolev, A. V., Strapp, J. W., and Isaac, G. A.: Evaluation of the Accuracy
of PMS Optical Array Probes, J. Atmos. Ocean. Tech., 15, 708–720,
https://doi.org/10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2, 1998. a
Lance, S., Brock, C. A., Rogers, D., and Gordon, J. A.: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683–1706, https://doi.org/10.5194/amt-3-1683-2010, 2010. a, b
Laucks, M. and Twohy, C. H.: Size-Dependent Collection Efficiency of an
Airborne Counter flow Virtual Impactor, Aerosol Sci. Tech., 28, 40–60,
https://doi.org/10.1080/02786829808965511, 1998. a
Launder, B. and Spalding, D.: The numerical computation of turbulent flows,
Comput. Methods Appl. Mech. Eng., 3, 269–289,
https://doi.org/10.1016/0045-7825(74)90029-2, 1974. a
Lawson, R. P., O'Connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., and
Jonsson, H.: The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New
Airborne, High-Speed, High-Resolution Particle Imaging Probe, J. Atmos.
Ocean. Tech., 23, 1462–1477, https://doi.org/10.1175/JTECH1927.1, 2006. a
Letko, W.: Investigation of the Fuselage Interference on a Pitot-static Tube
Extending Forward from the Nose of the Fuselage, National Advisory Committee
for Aeronautics, Langley Aeronautical Lab, Langley Field, US, NACA
Technical Note 1496,
available at: https://ntrs.nasa.gov/search.jsp?R=19930082152 (last access: 1 April 2020), 1947. a
Marks, C. R.: Drop Breakup and Deformation in Sudden Onset Strong Flow, Ph.D.
thesis, University of Maryland, College Park, US,
available at: http://adsabs.harvard.edu/abs/1998PhDT.......204M (last access: 1 April 2020), 1998. a
Masud, J.: Performance Characteristics of Flush Angle-of-Attack Measurement
System Integrated on a Pitot Tube, Eng. Appl. Comput. Fluid Mech., 4,
549–557, https://doi.org/10.1080/19942060.2010.11015340, 2010. a
McFarquhar, G. M.: A New Representation of Collision-Induced Breakup of
Raindrops and Its Implications for the Shapes of Raindrop Size Distributions,
J. Atmos. Sci., 61, 777–794,
https://doi.org/10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2, 2004. a
Moharreri, A., Craig, L., Rogers, D. C., and Dhaniyala, S.: A New Aircraft
Inlet for Sampling Interstitial Aerosol: Design Methodology,
Modeling, and Wind Tunnel Tests, Aerosol Sci. Tech., 47, 885–894,
https://doi.org/10.1080/02786826.2013.800186, 2013. a
Moharreri, A., Craig, L., Dubey, P., Rogers, D. C., and Dhaniyala, S.: Aircraft testing of the new Blunt-body Aerosol Sampler (BASE), Atmos. Meas. Tech., 7, 3085–3093, https://doi.org/10.5194/amt-7-3085-2014, 2014. a
Montorfano, A.: Mesh generation for HPC problems: the potential of
SnappyHexMesh, Workshop HPC Methods for Engineering, Milan, Italy, 19–21 June
2017, https://doi.org/10.13140/RG.2.2.25007.53923, 2017. a
Nacass, P.: Theoretical Errors on Airborne Measurements Of: Static Pressure,
Impact Temperature, Air Flow Angle, Air Flow Speed, National Center For
Atmospheric Research, Boulder, US, Technical Note NCAR/TN-385+STR,
https://doi.org/10.5065/D6M61H79, 1992. a
Nakao, S., Kashitani, M., Miyaguni, T., and Yamaguchi, Y.: A study on high
subsonic airfoil flows in relatively high Reynolds number by using OpenFOAM,
J. Therm. Sci., 23, 133–137, https://doi.org/10.1007/s11630-014-0687-5, 2014. a
Nayar, K. G., Panchanathan, D., McKinley, G. H., and Lienhard, J. H.: Surface
Tension of Seawater, J. Phys. Chem. Ref. Data, 43, 043103,
https://doi.org/10.1063/1.4899037, 2014. a
Noh, W. F. and Woodward, P.: SLIC (Simple Line Interface Calculation), in:
Proceedings of the Fifth International Conference on Numerical Methods in
Fluid Dynamics, Twente University, Enschede, Netherlands, 28 June–2 July
1976, 330–340, 1976. a
Norment, H. G.: Three-Dimensional Trajectory Analysis of Two Drop
Sizing instruments: PMS* OAP and PMS* FSSP, J. Atmos. Ocean. Tech.,
5, 743–756, https://doi.org/10.1175/1520-0426(1988)005<0743:TDTAOT>2.0.CO;2, 1988. a
Oertel, H. (Ed.): Prandtl’s Essentials of Fluid Mechanics, Springer, New York,
US, https://doi.org/10.1007/b97538, 2010. a
O'Rourke, P. J. and Amsden, A. A.: The Tab Method for Numerical Calculation of
Spray Droplet Breakup, in: SAE International Fall Fuels and Lubricants
Meeting and Exhibition, 1987, Technical Paper 872089, https://doi.org/10.4271/872089,
1987. a
Pilch, M. and Erdman, C. A.: Use of Breakup Time Data and Velocity History
Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced
Breakup of a Liquid Drop, Int. J. Multiphase Flow, 13, 741–757,
https://doi.org/10.1016/0301-9322(87)90063-2, 1987. a
Poret, M., Corradini, S., Merucci, L., Costa, A., Andronico, D., Montopoli, M., Vulpiani, G., and Freret-Lorgeril, V.: Reconstructing volcanic plume evolution integrating satellite and ground-based data: application to the 23 November 2013 Etna eruption, Atmos. Chem. Phys., 18, 4695–4714, https://doi.org/10.5194/acp-18-4695-2018, 2018. a
Pruppacher, H. and Klett, J.: Microphysics of Clouds and Precipitation,
Springer, Dordrecht, Netherlands, https://doi.org/10.1007/978-0-306-48100-0, 2010. a
Rallison, J.: The Deformation of Small Viscous Drops and Bubbles in Shear
Flows, Annu. Rev. Fluid Mech., 16, 45–66,
https://doi.org/10.1146/annurev.fl.16.010184.000401, 1984. a
Rhie, C. and Chow, W.: A numerical study of the turbulent flow past an isolated
airfoil with trailing edge separation, 3rd Joint Thermophysics, Fluids,
Plasma and Heat Transfer Conference, St. Louis, US, 7–11 June
1982, AIAA-82-0998, https://doi.org/10.2514/6.1982-998, 1982. a
Rosenfeld, D. and Lensky, I. M.: Satellite–Based Insights into
Precipitation Formation Processes in Continental and Maritime
Convective Clouds, B. Am. Meteorol. Soc., 79, 2457–2476,
https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2, 1998. a
Rumscheidt, F. D. and Mason., S. G.: Particle motions in sheared suspensions
XII. Deformation and burst of fluid drops in shear and hyperbolic flow, J.
Colloid Sci., 16, 238–261, https://doi.org/10.1016/0095-8522(61)90003-4, 1961. a
Scott, S., Bui, T. P., Chan, R., and Bowen, S. W.: The Meteorological
Measurement System on the NASA ER-2 Aircraft, J. Atmos. Ocean. Tech., 7,
525–540, https://doi.org/10.1175/1520-0426(1990)007<0525:TMMSOT>2.0.CO;2, 1990. a, b
Silverman, B.: Density Estimation for Statistics and Data Analysis, Chapman and
Hall, London, UK, 1986. a
Solomos, S., Ansmann, A., Mamouri, R.-E., Binietoglou, I., Patlakas, P., Marinou, E., and Amiridis, V.: Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015, Atmos. Chem. Phys., 17, 4063–4079, https://doi.org/10.5194/acp-17-4063-2017, 2017. a
Spanu, A., Dollner, M., Gasteiger, J., Bui, T. P., and Weinzierl, B.: ATom,
A-LIFE, SALTRACE: Flow-induced errors in in-situ aerosol and cloud
measurements, ORNL DAAC, Oak Ridge, US,
https://doi.org/10.3334/ORNLDAAC/1784, 2020. a
Stocker, T., Qin, D., Plattner, G. K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P.: Climate Change 2013 – The
Physical Science Basis: Working Group I Contribution to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, UK, https://doi.org/10.1017/CBO9781107415324, 2014. a
Sun, Z., Zhou, J., Zhang, H., and J.A., H.: On the influencing factors in a
Pitot tube measurement II. Influence of total and static ports,
Chinese Journal of Sensors and Actuators, 20, 941–944, 2007. a
Szakall, M., Diehl, K., Mitra, S. K., and Borrmann, S.: A Wind Tunnel
Study on the Shape, Oscillation, and Internal Circulation of
Large Raindrops with Sizes between 2.5 and 7.5 mm, J. Atmos. Sci., 66,
755–765, https://doi.org/10.1175/2008JAS2777.1, 2009. a, b
Tan, S. and Papadakis, M.: General Effects of Large Droplet Dynamics on Ice
Accretion Modeling, in: 41st Aerospace Sciences Meeting and Exhibit, 6–9
January 2003, Reno, US, AIAA 2003-392, 2003. a
Vargaftik, N., Volko, B., and Voljak, L.: International Tables of the Surface
Tension of Water, J. Phys. Chem. Ref. Data, 12, 817–820, https://doi.org/10.1063/1.555688,
1983. a
Vargas, M. and Feo, A.: Experimental Observations on the Deformation and
Breakup of Water Droplets Near the Leading Edge of an Airfoil, in: AIAA
Atmospheric and Space Environments Conference, Toronto, Canada, 2–5 August
2010, AIAA 2010-7670, https://doi.org/10.2514/6.2010-7670, 2010. a, b
Walser, A., Sauer, D., Spanu, A., Gasteiger, J., and Weinzierl, B.: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements, Atmos. Meas. Tech., 10, 4341–4361, https://doi.org/10.5194/amt-10-4341-2017, 2017. a, b
Weber, R. J., Clarke, A. D., Litchy, M., Li, J., Kok, G., Schillawski, R. D.,
and McMurry, P. H.: Spurious Aerosol Measurements when Sampling from Aircraft
in the Vicinity of Clouds., J. Geophys. Res., 103, 28337–28346,
https://doi.org/10.1029/98JD02086, 1998. a
Weigel, R., Spichtinger, P., Mahnke, C., Klingebiel, M., Afchine, A., Petzold, A., Krämer, M., Costa, A., Molleker, S., Reutter, P., Szakáll, M., Port, M., Grulich, L., Jurkat, T., Minikin, A., and Borrmann, S.: Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft, Atmos. Meas. Tech., 9, 5135–5162, https://doi.org/10.5194/amt-9-5135-2016, 2016. a, b, c
Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K., Kandler, K.,
Schütz, L., Koepke, P., and Fiebig, M.: Airborne measurements of dust layer
properties, particle size distribution and mixing state of Saharan dust
during SAMUM 2006, Tellus B, 61, 96–117,
https://doi.org/10.1111/j.1600-0889.2008.00392.x, 2009. a
Weinzierl, B., Sauer, D., Esselborn, M., Petzold, A., Veira, A., Rose, M.,
Mund, S., Wirth, M., Ansmann, A., Tesche, M., Gross, S., and Freudenthaler,
V.: Microphysical and optical properties of dust and tropical biomass burning
aerosol layers in the Cape Verde region – an overview of the airborne in situ
and lidar measurements during SAMUM-2, Tellus B, 63, 589–618,
https://doi.org/10.1111/j.1600-0889.2011.00566.x, 2011. a
Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza,
F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., Gasteiger, J.,
Groß, S., Haarig, M., Heinold, B., Kandler, K., Kristensen, T. B.,
Mayol-Bracero, O. L., Müller, T., Reitebuch, O., Sauer, D., Schäfler, A.,
Schepanski, K., Spanu, A., Tegen, I., Toledano, C., and Walser, A.: The
Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment
(SALTRACE): overview and selected highlights, B. Am. Meteorol. Soc., 98,
1427–1451, https://doi.org/10.1175/BAMS-D-15-00142.1, 2017. a, b, c
Weller, H., Tabor, G., Jasak, H., and Fureby, C.: A tensorial approach to
computational continuum mechanics using object-oriented techniques, Comput.
Phys., 12, 620–631, https://doi.org/10.1063/1.168744, 1998. a
Wessel, R. A. and Righi, J.: Generalized correlations for inertial impaction of
particles on a circular cylinder, Aerosol Sci. Tech., 9, 29–60,
https://doi.org/10.1080/02786828808959193, 1988. a
Wierzba, A.: Deformation and breakup of liquid drops in a gas stream at nearly
critical Weber numbers, Exp. Fluids, 9, 59–64, https://doi.org/10.1007/BF00575336,
1990. a
Wofsy, S., Afshar, S., Allen, H., Apel, E., Asher, E., Barletta, B., Bent, J.,
Bian, H., Biggs, B., Blake, D., Blake, N., Bourgeois, I., Brock, C., Brune,
W., Budney, J., Bui, T., Butler, A., Campuzano-Jost, P., Chang, C., Chin, M.,
Commane, R., Correa, G., Crounse, J., Cullis, P., Daube, B., Day, D.,
Dean-Day, J., Dibb, J., Digangi, J., Diskin, G., Dollner, M., Elkins, J.,
Erdesz, F., Fiore, A., Flynn, C., Froyd, K., Gesler, D., Hall, S., Hanisco,
T., Hannun, R., Hills, A., Hintsa, E., Hoffman, A., Hornbrook, R., Huey, L.,
Hughes, S., Jimenez, J., Johnson, B., Katich, J., Keeling, R., Kim, M., Kupc,
A., Lait, L., Lamarque, J.-F., Liu, J., Mckain, K., Mclaughlin, R., Meinardi,
S., Miller, D., Montzka, S., Moore, F., Morgan, E., Murphy, D., Murray, L.,
Nault, B., Neuman, J., Newman, P., Nicely, J., Pan, X., Paplawsky, W.,
Peischl, J., Prather, M., Price, D., Ray, E., Reeves, J., Richardson, M.,
Rollins, A., Rosenlof, K., Ryerson, T., Scheuer, E., Schill, G., Schroder,
J., Schwarz, J., St.Clair, J., Steenrod, S., Stephens, B., Strode, S.,
Sweeney, C., Tanner, D., Teng, A., Thames, A., Thompson, C., Ullmann, K.,
Veres, P., Vizenor, N., Wagner, N., Watt, A., Weber, R., Weinzierl, B.,
Wennberg, P., Williamson, C., Wilson, J., Wolfe, G., Woods, C., and Zeng, L.:
ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, ORNL DAAC, Oak
Ridge, US, https://doi.org/10.3334/ornldaac/1581, 2018. a, b
Yang, W., Jia, M., Che, Z., Sun, K., and Wang, T.: Transitions of deformation
to bag breakup and bag to bag-stamen breakup for droplets subjected to a
continuous gas flow, Int. J. Heat Mass Tran., 111, 884–894,
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.012, 2017. a
Short summary
This study investigates how the airflow around wing-mounted instruments on fast-flying aircraft affects aerosol and cloud measurements. It combines airborne data with numerical simulations and shows that particle speed, particle concentration, and shape of water droplets are modified by the airflow. The proposed correction strategy for optical particle counters and optical array probes considers airflow effects and significantly reduces errors of derived ambient aerosol and cloud properties.
This study investigates how the airflow around wing-mounted instruments on fast-flying aircraft...