Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5303-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5303-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018)
Dmitry M. Kabanov
V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian
Academy of Sciences, Academician Zuev Square 1, Tomsk, Russia
Christoph Ritter
CORRESPONDING AUTHOR
Alfred Wegener Institute for Polar and Marine Research, 14473 Potsdam, Germany
Sergey M. Sakerin
V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian
Academy of Sciences, Academician Zuev Square 1, Tomsk, Russia
Related authors
Simone Pulimeno, Angelo Lupi, Vito Vitale, Claudia Frangipani, Carlos Toledano, Stelios Kazadzis, Natalia Kouremeti, Christoph Ritter, Sandra Graßl, Kerstin Stebel, Vitali Fioletov, Ihab Abboud, Sandra Blindheim, Lynn Ma, Norm O’Neill, Piotr Sobolewski, Pawan Gupta, Elena Lind, Thomas F. Eck, Antti Hyvärinen, Veijo Aaltonen, Rigel Kivi, Janae Csavina, Dmitry Kabanov, Sergey M. Sakerin, Olga R. Sidorova, Robert S. Stone, Hagen Telg, Laura Riihimaki, Raul R. Cordero, Martin Radenz, Ronny Engelmann, Michel Van Roozendal, Anatoli Chaikovsky, Philippe Goloub, Junji Hisamitsu, and Mauro Mazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2527, https://doi.org/10.5194/egusphere-2025-2527, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzed aerosols optical properties over the Arctic and Antarctic to measure them even during long periods of darkness. It found that pollution in the Arctic is decreasing, likely due to European emission regulations, while wildfires are becoming a more important source of particles. In Antarctica, particle levels are higher near the coast than inland, and vary by season. These results help us better understand how air pollution and climate are changing at the Earth’s poles.
Simone Pulimeno, Angelo Lupi, Vito Vitale, Claudia Frangipani, Carlos Toledano, Stelios Kazadzis, Natalia Kouremeti, Christoph Ritter, Sandra Graßl, Kerstin Stebel, Vitali Fioletov, Ihab Abboud, Sandra Blindheim, Lynn Ma, Norm O’Neill, Piotr Sobolewski, Pawan Gupta, Elena Lind, Thomas F. Eck, Antti Hyvärinen, Veijo Aaltonen, Rigel Kivi, Janae Csavina, Dmitry Kabanov, Sergey M. Sakerin, Olga R. Sidorova, Robert S. Stone, Hagen Telg, Laura Riihimaki, Raul R. Cordero, Martin Radenz, Ronny Engelmann, Michel Van Roozendal, Anatoli Chaikovsky, Philippe Goloub, Junji Hisamitsu, and Mauro Mazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2527, https://doi.org/10.5194/egusphere-2025-2527, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzed aerosols optical properties over the Arctic and Antarctic to measure them even during long periods of darkness. It found that pollution in the Arctic is decreasing, likely due to European emission regulations, while wildfires are becoming a more important source of particles. In Antarctica, particle levels are higher near the coast than inland, and vary by season. These results help us better understand how air pollution and climate are changing at the Earth’s poles.
Denghui Ji, Xiaoyu Sun, Christoph Ritter, and Justus Notholt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3289, https://doi.org/10.5194/egusphere-2025-3289, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We have developed a new method that uses machine learning to analyse aerosols by combining different instruments measuring at different wavelengths. This method can identify the composition of these aerosols faster and more accurately. We tested it using ground-based and satellite data. Our results show that this method can help monitor air quality and better understand the impact of aerosols on the climate.
Xiaoyu Sun, Katrin Müller, Mathias Palm, Christoph Ritter, Denghui Ji, Tim Balthasar Röpke, and Justus Notholt
Atmos. Chem. Phys., 25, 6881–6902, https://doi.org/10.5194/acp-25-6881-2025, https://doi.org/10.5194/acp-25-6881-2025, 2025
Short summary
Short summary
We studied how air moves from the lower atmosphere to the stratosphere over the tropical western Pacific. Using observations and air tracking, we found that, in winter, air ascends and cold temperatures freeze water out, drying it before it enters the stratosphere. In summer, air tends to sink after cloud formation. This process affects water vapor amounts in the stratosphere, influencing the greenhouse effect and climate.
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025, https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Short summary
This paper presents a novel technique to extract starlight signals from all-sky images and retrieve aerosol optical depth (AOD). It is validated against lunar photometry, showing a strong correlation between data series. This innovative approach will expand nocturnal AOD measurements to more locations, as all-sky cameras are a simpler and more cost-effective alternative to stellar and lunar photometers.
Denghui Ji, Christoph Ritter, Xiaoyu Sun, Manuel Moser, Christiane Voigt, Mathias Palm, and Justus Notholt
EGUsphere, https://doi.org/10.5194/egusphere-2025-1932, https://doi.org/10.5194/egusphere-2025-1932, 2025
Short summary
Short summary
We discovered a process where large aerosols help small water droplets in Arctic clouds grow, even when conditions normally favor ice. Unlike the traditional view, this process may explain how liquid and ice can coexist in cold clouds. Based on theory and aircraft data, our findings provide new insight into the microphysics of mixed-phase clouds, which could improve understanding of how Arctic clouds affect climate.
Sandra Graßl, Christoph Ritter, Ines Tritscher, and Bärbel Vogel
Atmos. Chem. Phys., 24, 7535–7557, https://doi.org/10.5194/acp-24-7535-2024, https://doi.org/10.5194/acp-24-7535-2024, 2024
Short summary
Short summary
Arctic lidar data for 1 year are compared with global modeling of aerosol tracers in the stratosphere. A trend in the aerosol backscatter can be found. These observations are further compared with a model study to investigate the aerosol origin of the observed arctic aerosol. We found a correlation with increased backscatter signal during summer and early autumn and pathways from the Southeast Asian monsoon region and remains of the Asian tropopause aerosol layer in the Arctic.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Soheila Jafariserajehlou, Sachin S. Gunthe, Andreas Herber, Christoph Ritter, Hartmut Bösch, and John P. Burrows
Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024, https://doi.org/10.5194/amt-17-359-2024, 2024
Short summary
Short summary
Aerosols are suspensions of particles dispersed in the air. In this study, we use a novel retrieval of satellite data to investigate an optical property of aerosols, the aerosol optical depth, in the high Arctic to assess their direct and indirect roles in climate change. This study demonstrates that the presented approach shows good quality and very promising potential.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Tim Poguntke and Christoph Ritter
Atmos. Meas. Tech., 16, 4009–4014, https://doi.org/10.5194/amt-16-4009-2023, https://doi.org/10.5194/amt-16-4009-2023, 2023
Short summary
Short summary
In this work we analyze the impact of electromagnetic interference on an aerosol lidar. We found that aging transient recorders may produce a noise with fixed frequency that can be removed a posteriori.
Denghui Ji, Mathias Palm, Christoph Ritter, Philipp Richter, Xiaoyu Sun, Matthias Buschmann, and Justus Notholt
Atmos. Meas. Tech., 16, 1865–1879, https://doi.org/10.5194/amt-16-1865-2023, https://doi.org/10.5194/amt-16-1865-2023, 2023
Short summary
Short summary
To measuring aerosol components, a Fourier transform infrared spectrometer (FTIS) and a lidar are operated in Ny-Ålesund, Spitsbergen (78° N, 11° E). Using the FTIS, a retrieval algorithm is developed for dust, sea salt, black carbon, and sulfate. The distribution of aerosols or clouds is provided by lidar and used as an indicator for aerosol or cloud retrieval with the FTS. Thus, a two-instrument joint-observation scheme is designed and is used on the data measured from 2019 to the present.
Kevin Ohneiser, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, and Marion Maturilli
Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021, https://doi.org/10.5194/acp-21-15783-2021, 2021
Short summary
Short summary
The highlight of the lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition of the German icebreaker Polarstern (October 2019–October 2020) was the detection of a persistent, 10 km deep Siberian wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height that could potentially have impacted the record-breaking ozone depletion over the Arctic in the spring of 2020.
Cited articles
Alexandrov, M. D., Marshak, A., Cairns, B., Lacis, A. A., and Carlson, B. E.:
Automated cloud screening algorithm for MFRSR data, Geophys. Res. Lett.,
31, L04118, https://doi.org/10.1029/2003GL019105, 2004.
Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL
Atmospheric Constituent Profiles (0–120 km), Air Force Geophysics
Laboratory, AFGL-TR-86-0110, Environmental Research Papers, no. 954., 1986.
Ångström, A.: Parameters of atmospheric turbidity, Tellus XVI, 1,
64–75, 1964.
Cachorro, V. E., Duran, P., Vergaz, R., and de Frutos, A. M.: Measurements of the
atmospheric turbidity of the north-centre continental area in Spain:
spectral aerosol optical depth and Angstrom turbidity parameters, J.
Aerosol Sci., 31, 687–702, https://doi.org/10.1016/S0021-8502(99)00552-2, 2000.
Chen, Y. -C., Hamre, B., Frette, Q., Muyimbwa, D., Blindheim, S., Stebel, K.,
Sobolewski, P., Toledano, C., and Stamnes, J.: Aerosol optical properties in
Northern Norway and Svalbard, Appl. Opt., 55, 660–672.
https://doi.org/10.1364/AO.55.000660, 2016.
Chubarova, N., Nezval', Ye., Sviridenkov, I., Smirnov, A., and Slutsker, I.: Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010, Atmos. Meas. Tech., 5, 557–568, https://doi.org/10.5194/amt-5-557-2012, 2012.
Chubarova, N. E., Nezval', E. I., Belikov, I. B., Gorbarenko, E. V., Eremina, I. D.,
Zhdanova, E. Yu., Korneva, I. A., Konstantinov, P. I., Lokoshchenko, M. A.,
Skorokhod, A. I., and Shilovtseva, O. A.: Climatic and Environmental Characteristics
of Moscow Megalopolis According to the Data of the Moscow State University
Meteorological Observatory over 60 Years, Russ. Meteorol. Hydro+., 39, 602–613, https://doi.org/10.3103/S1068373914090052, 2014.
Chubarova, N. Y., Poliukhov, A. A., and Gorlova, I. D.: Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction, Atmos. Meas. Tech., 9, 313–334, https://doi.org/10.5194/amt-9-313-2016, 2016.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T.,
Slutsker, I., and Kinne, S.: Wavelength dependence of the optical biomass
burning, urban, and desert dust aerosol, J. Geophys. Res., 104,
31333–31350, 1999.
Eck, T. F., Holben, B. N., Reid, J. S., Sinyuk, A., Hyer, E. J., O'Neill, N. T., Shaw,
G. E., Vande Castle, J. R., Chapin, F. S., Dubovik, O., Smirnov, A., Vermote, E.,
Schafer, J. S., Giles, D., Slutsker, I., Sorokine, M., and Newcomb, W. W.: Optical
properties of boreal region biomass burning aerosols in central Alaska and
seasonal variation of aerosol optical depth at an Arctic coastal site, J.
Geophys. Res., 114, D11201, https://doi.org/10.1029/2008JD010870, 2009.
Freund, J.: Aerosol optical depth in the Canadian Arctic, Atmos. Ocean,
21, 158–167, 1983.
Glantz, P., Bourassa, A., Herber, A., Iversen, T., Karlsson, J., Kirkevåg,
A., Maturilli, M., Seland, Ø., Stebel, K., Struthers, H., Matthias, M., and
Thomason, L.: Remote sensing of aerosols in the Arctic for an evaluation of
global climate model simulations, J. Geophys. Res.-Atmos., 119,
8169–8188, https://doi.org/10.1002/2013JD021279, 2014.
Gorbarenko, E. V. and Rublev, A. N.: Long-term changes in the aerosol optical
thickness in Moscow and correction under strong atmospheric turbidity,
Izv. Atmos. Ocean Phy+., 52, 188–195, 2016.
Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., Schulz, K.,
Kaptu, J., Albrecht, T., and Notholt, J.: Continuous day and night aerosol optical
depth observations in the Arctic between 1991 and 1999, J. Geophys. Res., 107, 4097, https://doi.org/10.1029/2001JD000536, 2002.
Hoffmann, A., Ritter, C., Stock, M., Maturilli, M., Eckhardt, S., Herber, A., and
Neuber, R.: Lidar measurements of the Kasatochi aerosol plume in August and
September 2008 in Ny-Ålesund, Spitsbergen, J. Geophys. Res., 115, D00L12, https://doi.org/10.1029/2009JD013039, 2010.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote,
E., Reagan, J. A., Kaufman, Y. J., Nakadjima, T., Lavenu, F., Jankowiak, I., and
Smirnov, A.: AERONET - A federated instrument network and data archive for
aerosol characterization, Rem. Sens. Environ., 66, 1–16, 1988.
Holben, B. N., Tanre, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N.,
Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande
Castle, J., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A.,
O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi, G.: An emerging
ground-based aerosol climatology: Aerosol optical depth from AERONET,
J. Geophys. Res., 106, 12067–12097, https://doi.org/10.1016/S0034-4257(98)00031-5, 2001.
IPCC: Climate Change 2013: The Physical Science Basis, Intergovernmental
Panel on Climate Change, 2013, 1552 pp. (electronic resource), available at:
http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf (last access: 5 October 2020), 2013.
Isaksen, K., Nordli, O., Forland, E. J., Lupikasza, E., Eastwood, S., and
Niedzwiedz, T.: Recent warming on Spitsbergen – Influence of atmospheric
circulation and sea ice cover, J. Geophys. Res.-Atmos., 121, 11913–11931, https://doi.org/10.1002/2016JD025606, 2016.
Kabanov, D. M. and Sakerin, S. M.: About method of atmospheric aerosol optical
thickness determination in near-spectral range, Atmos. Ocean Opt., 10, 540–545, 1997.
Kabanov, D. M., Veretennikov, V. V., Voronina, Yu. V., Sakerin, S. M., and Turchinovich, Yu. S.: Information system for network sunphotometers, Atmos. Ocean Opt., 22, 121–127, https://doi.org/10.1134/S1024856009010187,
2009.
Kabanov, D. M. and Sakerin, S. M.: Comparison of assessment techniques of fine and
coarse component aerosol optical depth of the atmosphere from measurement in
the visible spectrum, in: Proc. SPIE., 22nd International Symposium Atmospheric and Ocean
Optics: Atmospheric Physics, Tomsk, Russia, 100353D, https://doi.org/10.1117/12.2248657. 2016.
Kabanov, D. M., Sakerin, S. M., Kruglinsky, I. A., Ritter, C., Sobolewski, P. S., and
Zielinski, T.: Comparison of atmospheric aerosol optical depths measured with
different sun photometers in three regions of Spitsbergen Archipelago, in: Proc. SPIE., 24th International Symposium on Atmospheric and Ocean Optics:
Atmospheric Physics, Tomsk, Russia, 13 December 2018, https://doi.org/10.1117/12.2503949,
2018.
Kabanov, D. M., Sakerin, S. M., and Ritter, C.: Preparing time series of observations
of atmospheric aerosol optical depth (AOD) at two stations on Spitsbergen
Archipelago and selecting methods of extracting the contributions of fine
and coarse AOD components, in: Proc. SPIE., 25th International Symposium
on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 18 December 2019, https://doi.org/10.1117/12.2539926, 2019a.
Kabanov, D. M., Sakerin, S. M., and Turchinovich, Yu, S.: Interannual and seasonal variations in the atmospheric aerosol optical depth in the region of Tomsk (1995–2018), Atmospheric and Ocean Optics, 32, 663–670, https://doi.org/10.1134/S1024856019060071, 2019b.
Kasten, F. and Young, A. T.: Revised optical air mass tables and approximation
formula, Appl. Opt., 28, 4375–4738, https://doi.org/10.1364/AO.28.004735, 1989.
Kondratyev, K. Ya., Ivlev, L. S., Krapivin, V. F., and Varotsos, C. A.: Atmospheric
aerosol properties, formation processes, and impacts: from nano- to global
scales, Springer/PRAXIS, Chichester, U.K., 572 pp., 2006.
Li, J., Carlson, B. E., Dubovik, O., and Lacis, A. A.: Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys., 14, 12271–12289, https://doi.org/10.5194/acp-14-12271-2014, 2014.
Markowicz, K. M., Pakszys, P., Ritter, C., Zielinski, T., Udisti, R., Cappelletti,
D., Mazzola, M., Shiobara, M., Xian, P., Zawadzka, O., Lisok, J., Petelski, T.,
Makuch, P., and Karasiński, G.: Impact of North American intense fires on
aerosol optical properties measured over the European Arctic in July 2015,
J. Geophys. Res. -Atmos, 121, 14487–14512, https://doi.org/10.1002/2016JD025310, 2016.
Mazzola, M., Stone, R. S., Herber, A., Tomasi, C., Lupi, A., Vitale, V., Lanconelli, C., Toledano, C., Cachorro, V. E., O’Neill, N. T., Shiobara, M., Aaltonen, V., Stebel, K., Zielinski, T., Petelski, T., Ortiz de Galisteo, J.-P., Torres, B., Berjon, A., Goloub, P., Li, Z., Blarel, L., Abboud, I., Cuevas, E., Stock, M., Schulz, K.-H., Virkkula, A.: Evaluation of sun photometer capabilities for retrievals
of aerosol optical depth at high latitudes: The POLAR-AOD intercomparison
campaigns, Atmos. Environ., 52, 4–17, https://doi.org/10.1016/j.atmosenv.2011.07.042, 2012.
Michalsky, J., Denn, F., Flynn, C., Hodges, G,, Kiedron, P., Koontz, A., Schlemmer,
J., and Schwartz, S. E.: Climatology of aerosol optical depth in north-central
Oklahoma: 1992–2008, J. Geophys. Res., 115, D07203, https://doi.org/10.1029/2009JD012197, 2010.
Lund Myhre, C., Toledano, C., Myhre, G., Stebel, K., Yttri, K. E., Aaltonen, V., Johnsrud, M., Frioud, M., Cachorro, V., de Frutos, A., Lihavainen, H., Campbell, J. R., Chaikovsky, A. P., Shiobara, M., Welton, E. J., and Tørseth, K.: Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006, Atmos. Chem. Phys., 7, 5899–5915, https://doi.org/10.5194/acp-7-5899-2007, 2007.
Ohvril, H., Teral, H., Neiman, L., Uustare, M., Tee, M., Russak, V., Kallis, A.,
Okulov, O., Terez, E., Terez, G., Guschin, G., Abakumova, G., Gorbarenko, E.,
Tsvetkov, A., and Laulainen, N.: Global dimming and brightening versus
atmospheric column transparency, Europe, 1906–2007, J. Geophys. Res., 114,
D00D12, https://doi.org/10.1029/2008JD010644, 2009.
O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman, S.:
Spectral discrimination of coarse and fine mode optical depth, J. Geophys.
Res., 108, 4559–4573, https://doi.org/10.1029/2002JD002975, 2003.
Pakszys, Ð. and Zielinski, T.: Aerosol optical properties over Svalbard: a
comparison between Ny-Ålesund and Hornsund, Oceanologia, 2017,
431–444, https://doi.org/10.1016/j.oceano.2017.05.002, 2017.
Plakhina, I. N., Pankratova, N. V., and Makhotkina, E. L.: Variations in the
atmospheric aerosol optical depth from the data obtained at the Russian
actinometric network in 1976–2006, Izv. Atmos. Ocean Phy+., 45,
456–466, 2009.
Putaud, J. P., Cavalli, F., Martins dos Santos, S., and Dell'Acqua, A.: Long-term trends in aerosol optical characteristics in the Po Valley, Italy, Atmos. Chem. Phys., 14, 9129–9136, https://doi.org/10.5194/acp-14-9129-2014, 2014.
Quinn, P., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., and Gong, S. L.: Arctic haze: current trends and knowledge gaps, Tellus, 59,
99–114, https://doi.org/10.1111/j.1600-0889.2006.00238.x, 2007.
Radionov, V. F. and Marshunova, M. S.: Long-term variations in the turbidity of
the Arctic atmosphere in Russia, Atmos. Ocean, 30, 531–549, 1992.
Sakerin, S. M. and Kabanov, D. M.: Spectral dependence of the atmospheric aerosol
optical depth in the wavelength range from 0.37 to 4 µm, Atmos. Ocean Opt., 20, 141–149, 2007a.
Sakerin, S. M. and Kabanov, D. M.: Correlations between the parameters of
Angström formula and aerosol optical thickness of the atmosphere in the
wavelength range from 1 to 4 µm, Atmos. Ocean Opt.,
20, 200–206, 2007b.
Sakerin, S. M., Gorbarenko, E. V., and Kabanov, D. M.: Peculiarities of many-year
variations of atmospheric aerosol optical thickness and estimates of
influence of different factors, Atmos. Ocean Opt., 21, 540–545, 2008a.
Sakerin, S. M., Kabanov, D. M., Smirnov, A. V., and Holben, B. N.: Aerosol optical depth
of the atmosphere over ocean in the wavelength range 0.37-4 µm,
Int. J. Remote Sens., 29, 2519–2547, https://doi.org/10.1080/01431160701767492, 2008b.
Sakerin, S. M., Kabanov, D. M., Nasrtdinov, I. M., Turchinovich, S. A., and
Turchinovich, Yu. S.: The results of two-point experiments on the estimation of the urban anthropogenic effect on the characteristics of atmospheric
transparency, Atmos. Ocean Opt., 23, 88–94,
https://doi.org/10.1134/S1024856010020028, 2010.
Sakerin, S. M., Kabanov, D. M., Rostov, A. P., Turchinovich, S. A., and Knyazev, V. V.:
Sun photometers for measuring spectral air transparency in stationary and
mobile conditions, Atmos. Ocean Opt., 26, 352–356, https://doi.org/10.1134/S102485601304012X, 2013.
Sakerin, S. M., Beresnev, S. A., Kabanov, D. M., Kornienko, G. I., Nikolashkin, S. V.,
Poddubny, V. A., Tashchilin, M. A., Turchinovich, Yu. S., Holben, B. N., and Smirnov,
A.: Analysis of approaches to modeling the annual and spectral behaviors of
atmospheric aerosol optical depth in Siberia and Primorye, Atmos. Ocean Opt., 28, 145–157, https://doi.org/10.1134/S1024856015020104,
2015.
Sakerin, S. M., Kabanov, D. M., Radionov, V. F., Chernov, D. G., Turchinovich, Yu. S.,
Lubo-Lesnichenk, K. E., and Prakhov, A. N.: Generalization of results of
atmospheric aerosol optical depth measurements on Spitsbergen Archipelago in
2011–2016, Atmos. Ocean Opt., 31, 163–170,
https://doi.org/10.1134/S1024856018020112, 2018a.
Sakerin, S. M., Golobokova, L. P., Kabanov, D. M., Pol'kin, V. V., and Radionov, V. F.:
Zonal distribution of aerosol physicochemical characteristics in the Eastern
Atlantic, Atmos. Ocean Opt., 31, 492–501, https://doi.org/10.1134/S1024856018050160, 2018b.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and bimodal
aerosol size distributions, J. Geophys. Res., 111, D07207,
https://doi.org/10.1029/2005JD006328, 2006.
Shaw, G. E.: Atmospheric turbidity in the Polar regions, J. Appl. Meteorol., 21, 1080–1088, https://doi.org/10.1175/1520-0450(1982)021<1080:ATITPR>2.0.CO;2, 1982.
Shaw, G. E.: The Arctic haze phenomenon, Bull. Amer. Meteor. Soc., 76, 2403–2414, https://doi.org/10.1175/1520-0477(1995)076<2403:TAHP> 2.0.CO;2, 1995.
Shifrin, K. S.: Simple relationships for the Angstrom parameter of disperse
systems, Appl. Opt., 34, 4480–4485, 1995.
Sitnov, S. A., Gorchakov, G. I., Sviridenkov, M. A., Gorchakova, I. A., Karpov, A. V.,
and Kolesnikova, A. B.: Aerospace monitoring of smoke aerosol over the European
part of Russia in the period of massive forest and peatbog fires in
July–August of 2010, Atmos. Ocean Opt., 26,
265–280, https://doi.org/10.1134/S1024856013040143, 2013.
Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., Kowal,
D., Lunder, C., Mefford, T., Ogren, J. A., Sharma, S., Spichtinger, N., Stebel, K.,
Stone, R., Ström, J., Tørseth, K., Wehrli, C., and Yttri,
K. E.: Pan-Arctic enhancements of light absorbing aerosol concentrations due
to North American boreal forest fires during summer 2004, J. Geophys. Res., 111, D22214, https://doi.org/10.1029/2006JD007216, 2006.
Stohl, A., Berg, T., Burkhart, J. F., Fjǽraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007.
Stone, R. S., Anderson, G. P., Shettle, E. P., Andrews, E., Loukachine, K., Dutton,
E. G., Schaaf, C., and Roman III, M. O.: Radiative impact of boreal smoke in the
Arctic: Observed and modelled, J. Geophys. Res., 113, D14S16, https://doi.org/10.1029/2007JD009657, 2008.
Sviridenkov, M. A.: Retrieval of atmospheric aerosol characteristics from
spectral measurements of transparency and small-angle scattering, Atmos.
Ocean Opt., 14, 1022–1025, 2001.
Toledano, C., Cachorro, V., Gausa, M., Stebel, K., Aaltonen, V., Berjon, A., Ortis,
J. P., de Frutos, A. M., Bennouna, Y., Blindheim, S., Myhre, C. L., Zibordi, G.,
Wehrli, C., Kratzer, S., Hakanson, B., Carlund, T., de Leuww, G., and Herber, A.:
Overview of sun photometer measurements of aerosol properties in Scandinavia
and Svalbard, Atmos. Environ., 52, 18–28,
https://doi.org/10.1016/j.atmosenv.2011.10.022, 2012.
Tomasi, C., Lupi, A., Mazzola, M., Stone, R. S., Dutton, E. G., Herber, A., Radionov, V. F., Holben, B., Sorokin, M., Sakerin, S. M., Terpugova, S. A., Lanconelli, C.,
Petkov, B., and Vitale, V.: An update of the long-term trend of aerosol optical
depth in the polar regions using POLAR-AOD measurements performed during in
International Polar Year, Atmos. Environ., 52, 29–47,
https://doi.org/10.1016/j.atmosenv.2012.02.055, 2012.
Tomasi, C., Kokhanovsky, A. A., Lupi, A., Ritter, C., Smirnov, A., Mazzola, M.,
Stone, R. S., Lanconelli, C., Vitale, V., Holben, B. N., Nyeki, S., Wehrli, C.,
Altonen, V., de Leeuw, G., Rodriguez, E., Herber, A. B., Stebel, K., Stohl, A.,
O'Neill, N. T., Radionov, V. F., Zielinski, T., Petelski, T., Sakerin, S. M.,
Kabanov, D. M., Xue, Y., Mei, L., Istomina, L., Wagener, R., McArthur, B.,
Sobolewski, P. S., Butler, J., Kivi, R., Courcoux, Y., Larouche, P., Broccardo, S., and
Piketh, S. J.: Aerosol remote sensing in polar regions, Earth-Sci. Rev.,
140, 108–157, https://doi.org/10.1016/j.earscirev.2014.11.001, 2015.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Twitty, J. T.: The inversion of aureole measurements to derive aerosol size
distributions, J. Atmos. Sci., 32, 584–591, https://doi.org/10.1175/1520-0469(1975)032<0584:TIOAMT>2.0.CO;2, 1975.
Vinogradova, A. A., Smirnov, N. S., Korotkov, V. N., and Romanovskay, A. A.: Forest
fires in Siberia and the far east: emissions and atmospheric transport of
black carbon to the Arctic, Atmos. Ocean Opt., 28, 566–574. https://doi.org/10.1134/S1024856015060184, 2015.
Walczowski, W. and Piechura, J.: Influence of the West Spitsbergen Current on
the local climate. Int. J. Climatol, 31, 1088–1093, https://doi.org/10.1002/joc.2338,
2011.
Weller, M., Schulz, E., Leiterer, U., Naebert, T., Herber, A., and Thomason, L. W.:
Ten years of aerosol optical depth observation at the Lindenberg
meteorological observatory, Contr. Atmos. Phys. 71, 387–400,
1998.
WMO: WMO/GAW Expert Workshop on a global surface-based network for long term
observations of column aerosol optical properties, editied by: Baltensperger U.,
Barrie, L., and Wehrli, C., Report GAW 162 – WMO/GAW, Davos, March 2005 (WMO TD No.
1287), 144 pp., available at: https://library.wmo.int/doc_num.php?explnum_id=9299 (last access: 5 October 2020), 2005.
WMO: WMO/GAW report no. 183, operations handbook – ozone observations with a
Dobson spectrophotometer, available at: https://www.wmo.int/pages/prog/arep/gaw/documents/GAW183-Dobson-WEB.pdf (last access: 5 October 2020), 85 pp., 2008.
Xia, X. G.: Variability of aerosol optical depth and Ångström
wavelength exponent derived from AERONET observations in recent decades,
Environ. Res. Lett., 6, 044011, https://doi.org/10.1088/1748-9326/6/4/044011, 2011.
Zhdanova, E. Yu., Khlestova, Yu. O., and Chubarova, N. Y.: Trends in Atmospheric Aerosol Characteristics in Moscow derived from Multiyear AERONET Measurements, Atmos. Ocean Opt., 32, 534–539, https://doi.org/10.1134/S1024856019050191, 2019.
Zhuravleva, T. B., Kabanov, D. M., Nasrtdinov, I. M., Russkova, T. V., Sakerin, S. M., Smirnov, A., and Holben, B. N.: Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012, Atmos. Meas. Tech., 10, 179–198, https://doi.org/10.5194/amt-10-179-2017, 2017.
Short summary
Long-term photometer measurements of two sites on Spitsbergen, Barentsburg and Ny-Ålesund, in the European Arctic are presented and compared. We find slightly higher aerosol optical depths at Barentsburg and attribute this to a higher concentration of small particles.
Long-term photometer measurements of two sites on Spitsbergen, Barentsburg and Ny-Ålesund, in...