Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5319-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5319-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Senseable City Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA
Ralph A. Kahn
Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
James A. Limbacher
Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
Eloise A. Marais
School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, USA
now at: School of Physics and Astronomy, University of Leicester,
Leicester, UK
Fábio Duarte
Senseable City Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA
Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
Carlo Ratti
Senseable City Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA
Related authors
Priyanka deSouza, Ralph Kahn, Tehya Stockman, William Obermann, Ben Crawford, An Wang, James Crooks, Jing Li, and Patrick Kinney
Atmos. Meas. Tech., 15, 6309–6328, https://doi.org/10.5194/amt-15-6309-2022, https://doi.org/10.5194/amt-15-6309-2022, 2022
Short summary
Short summary
How sensitive are the spatial and temporal trends of PM2.5 derived from a network of low-cost sensors to the calibration adjustment used? How transferable are calibration equations developed at a few co-location sites to an entire network of low-cost sensors? This paper attempts to answer this question and offers a series of suggestions on how to develop the most robust calibration function for different end uses. It uses measurements from the Love My Air network in Denver as a test case.
Xin Xi, Jun Wang, Zhendong Lu, Andrew M. Sayer, Jaehwa Lee, Robert C. Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, James Limbacher, and Ralph A. Kahn
Atmos. Chem. Phys., 25, 7403–7429, https://doi.org/10.5194/acp-25-7403-2025, https://doi.org/10.5194/acp-25-7403-2025, 2025
Short summary
Short summary
The Aralkum Desert is challenging for aerosol retrieval due to its bright, heterogeneous, and dynamic surfaces and the lack of in situ constraints on aerosol properties. The performance and consistency of satellite algorithms in observing Aralkum-generated saline dust remain unknown. This study compares multisensor UVAI (ultraviolet aerosol index), AOD (aerosol optical depth), and ALH (aerosol layer height) products and reveals inconsistencies and potential biases over the Aral Sea basin.
Xiaohua Pan, Mian Chin, Ralph A. Kahn, Hitoshi Matsui, Toshihiko Takemura, Meiyun Lin, Yuanyu Xie, Dongchul Kim, and Maria Val Martin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2603, https://doi.org/10.5194/egusphere-2025-2603, 2025
Short summary
Short summary
Wildfire smoke can travel thousands of kilometers, affecting air quality far from the fire itself. This study looks at how two key factors – how much smoke is emitted & how high it rises – affect how smoke spreads. Using data from a major 2008 Siberian wildfire, four computer models were tested. Results show that models often inject smoke too low & remove it too quickly, missing high-altitude smoke seen by satellites. Better estimates of smoke height are crucial to improve air quality forecasts.
Katherine T. Junghenn Noyes and Ralph A. Kahn
EGUsphere, https://doi.org/10.5194/egusphere-2025-395, https://doi.org/10.5194/egusphere-2025-395, 2025
Short summary
Short summary
With observations from NASA’s Multi-Angle Imaging Spectroradiometer (MISR) satellite instrument, we can constrain wildfire plume heights, smoke age, and particle size, shape, and light-absorption properties. We study over 3,600 wildfire plumes across Siberia by statistically comparing the MISR results to observations of fire strength, land cover type, and meteorology. We then stratify plumes by land cover type and infer the dominant aerosol aging mechanisms among different plume types.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
James A. Limbacher, Ralph A. Kahn, Mariel D. Friberg, Jaehwa Lee, Tyler Summers, and Hai Zhang
Atmos. Meas. Tech., 17, 471–498, https://doi.org/10.5194/amt-17-471-2024, https://doi.org/10.5194/amt-17-471-2024, 2024
Short summary
Short summary
We present the new Multi-Angle Geostationary Aerosol Retrieval Algorithm (MAGARA) that fuses observations from GOES-16 and GOES-17 to retrieve information about aerosol loading (at 10–15 min cadence) and aerosol particle properties (daily), all at pixel-level resolution. We present MAGARA results for three case studies: the 2018 California Camp Fire, the 2019 Williams Flats Fire, and the 2019 Kincade Fire. We also compare MAGARA aerosol loading and particle properties with AERONET.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022, https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Short summary
Launched in December 1999, NASA’s Multi-angle Imaging SpectroRadiometer (MISR) has given researchers qualitative constraints on aerosol particle properties for the past 22 years. Here, we present a new MISR research aerosol retrieval algorithm (RA) that utilizes over-land surface reflectance data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) to address limitations of the MISR operational aerosol retrieval algorithm and improve retrievals of aerosol particle properties.
Priyanka deSouza, Ralph Kahn, Tehya Stockman, William Obermann, Ben Crawford, An Wang, James Crooks, Jing Li, and Patrick Kinney
Atmos. Meas. Tech., 15, 6309–6328, https://doi.org/10.5194/amt-15-6309-2022, https://doi.org/10.5194/amt-15-6309-2022, 2022
Short summary
Short summary
How sensitive are the spatial and temporal trends of PM2.5 derived from a network of low-cost sensors to the calibration adjustment used? How transferable are calibration equations developed at a few co-location sites to an entire network of low-cost sensors? This paper attempts to answer this question and offers a series of suggestions on how to develop the most robust calibration function for different end uses. It uses measurements from the Love My Air network in Denver as a test case.
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Erin E. McDuffie, Steven J. Smith, Patrick O'Rourke, Kushal Tibrewal, Chandra Venkataraman, Eloise A. Marais, Bo Zheng, Monica Crippa, Michael Brauer, and Randall V. Martin
Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, https://doi.org/10.5194/essd-12-3413-2020, 2020
Short summary
Short summary
Global emission inventories are vital to understanding the impacts of air pollution on the environment, human health, and society. We update the open-source Community Emissions Data System (CEDS) to provide global gridded emissions of seven key air pollutants from 1970–2017 for 11 source sectors and multiple fuel types, including coal, solid biofuel, and liquid oil and natural gas. This dataset includes both monthly global gridded emissions and annual national totals.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Cited articles
Al-Saadi, J., Szykman, J., Pierce, R. B., Kittaka, C., Neil, D., Chu, D. A.,
Remer, L., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R.,
Dimmick, F., and Fishman, J.: Improving National Air Quality Forecasts with
Satellite Aerosol Observations, B. Am. Meteorol. Soc., 86, 1249–1262,
https://doi.org/10.1175/BAMS-86-9-1249, 2005.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C.,
Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic
carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, 2, https://doi.org/10.1029/2006GB002840, 2007.
Carotenuto, F., Brilli, L., Gioli, B., Gualtieri, G., Vagnoli, C., Mazzola,
M., Viola, A. P., Vitale, V., Severi, M., Traversi, R., and Zaldei, A.:
Long-Term Performance Assessment of Low-Cost Atmospheric Sensors in the
Arctic Environment, Sensors, 20, 1919, https://doi.org/10.3390/s20071919, 2020.
Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G.,
Martelli, F., Matese, A., Toscano, P., Vagnoli, C., and Zaldei, A.:
Development of Low-Cost Air Quality Stations for Next Generation Monitoring
Networks: Calibration and Validation of PM2.5 and PM10 Sensors, Sensors,
18, 2843, https://doi.org/10.3390/s18092843, 2018.
deSouza, P.: Air pollution in Kenya: a review, Air Qual. Atmos. Hlth.,
15, 1–9, https://doi.org/10.1007/s11869-020-00902-x, 2020.
deSouza, P., Nthusi, V., Klopp, J. M., Shaw, B. E., Ho, W. O., Saffell, J.,
Jones, R., and Ratti, C.: A Nairobi experiment in using low cost air quality
monitors, Clean Air J. Tydskr. Vir Skoon Lug, 27, 12–42, 2017.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A.
W., Gordon, H. R., Muller, J.-P., Myneni, R. B., Sellers, P. J., Pinty, B., and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer (MISR)
instrument description and experiment overview, IEEE T. Geosci. Remote, 36, 1072–1087, https://doi.org/10.1109/36.700992, 1998.
Diner, D. J., Boland, S. W., Brauer, M., Bruegge, C., Burke, K. A., Chipman, R., Di Girolamo, L., Garay, M. J., Hasheminassab, S., Hyer, E., Jerrett, M.: Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA, J. Appl. Remote Sens., 12, 042603, https://doi.org/10.1117/1.JRS.12.042603, 2018.
Diner, D. J., Braswell, B. H., Davies, R., Gobron, N., Hu, J., Jin, Y.,
Kahn, R. A., Knyazikhin, Y., Loeb, N., Muller, J.-P., Nolin, A. W., Pinty,
B., Schaaf, C. B., Seiz, G., and Stroeve, J.: The value of multiangle
measurements for retrieving structurally and radiatively consistent
properties of clouds, aerosols, and surfaces, Remote Sens. Environ., 97,
495–518, https://doi.org/10.1016/j.rse.2005.06.006, 2005.
Duncan, B. N., Prados, A. I., Lamsal, L. N., Liu, Y., Streets, D. G., Gupta,
P., Hilsenrath, E., Kahn, R. A., Nielsen, J. E., Beyersdorf, A. J., Burton,
S. P., Fiore, A. M., Fishman, J., Henze, D. K., Hostetler, C. A., Krotkov,
N. A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K. E., Pierce,
R. B., Yoshida, Y., and Ziemba, L. D.: Satellite data of atmospheric
pollution for U.S. air quality applications: Examples of applications,
summary of data end-user resources, answers to FAQs, and common mistakes to
avoid, Atmos. Environ., 94, 647–662, https://doi.org/10.1016/j.atmosenv.2014.05.061,
2014.
Engel-Cox, J. A., Holloman, C. H., Coutant, B. W., and Hoff, R. M.:
Qualitative and quantitative evaluation of MODIS satellite sensor data for
regional and urban scale air quality, Atmos. Environ., 38, 2495–2509,
https://doi.org/10.1016/j.atmosenv.2004.01.039, 2004.
Friberg, M. D., Kahn, R. A., Limbacher, J. A., Appel, K. W., and Mulholland, J. A.: Constraining chemical transport PM2.5 modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley, Atmos. Chem. Phys., 18, 12891–12913, https://doi.org/10.5194/acp-18-12891-2018, 2018.
Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., and Kumar, N.:
Satellite remote sensing of particulate matter and air quality assessment
over global cities, Atmos. Environ., 40, 5880–5892,
https://doi.org/10.1016/j.atmosenv.2006.03.016, 2006.
Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-188, in review, 2020.
Hu, Z.: Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease, Int. J. Health Geogr., 8, 27,
https://doi.org/10.1186/1476-072X-8-27, 2009.
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as
retrieved by MISR, J. Geophys. Res.-Atmos., 120, 4248–4281,
https://doi.org/10.1002/2015JD023322, 2015.
Kahn, R. A., Banerjee, P., and McDonald, D.: Sensitivity of multiangle imaging
to natural mixtures of aerosols over ocean, J. Geophys. Res.-Atmos.,
106, 18219–18238, https://doi.org/10.1029/2000JD900497, 2001.
Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F.,
Smirnov, A., and Holben, B. N.: Multiangle Imaging SpectroRadiometer global
aerosol product assessment by comparison with the Aerosol Robotic Network,
J. Geophys. Res.-Atmos., 115, D23, https://doi.org/10.1029/2010JD014601, 2010.
Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di
Sabatino, S., Bell, M., Norford, L., and Britter, R.: The rise of low-cost
sensing for managing air pollution in cities, Environ. Int., 75, 199–205,
https://doi.org/10.1016/j.envint.2014.11.019, 2015.
Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., and Koutrakis, P.: A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations, Atmos. Chem. Phys., 11, 7991–8002, https://doi.org/10.5194/acp-11-7991-2011, 2011.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Lewis, A. and Edwards, P.: Validate personal air-pollution sensors, Nature, 535, 29–31, https://doi.org/10.1038/535029a, 2016.
Limbacher, J. A. and Kahn, R. A.: MISR research-aerosol-algorithm refinements for dark water retrievals, Atmos. Meas. Tech., 7, 3989–4007, https://doi.org/10.5194/amt-7-3989-2014, 2014.
Limbacher, J. A. and Kahn, R. A.: MISR empirical stray light corrections in high-contrast scenes, Atmos. Meas. Tech., 8, 2927–2943, https://doi.org/10.5194/amt-8-2927-2015, 2015.
Limbacher, J. A. and Kahn, R. A.: Updated MISR dark water research aerosol retrieval algorithm – Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections, Atmos. Meas. Tech., 10, 1539–1555, https://doi.org/10.5194/amt-10-1539-2017, 2017.
Limbacher, J. A. and Kahn, R. A.: Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters, Atmos. Meas. Tech., 12, 675–689, https://doi.org/10.5194/amt-12-675-2019, 2019.
Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., and Koutrakis, P.:
Estimating Ground-Level PM2.5 in the Eastern United States Using Satellite
Remote Sensing, Environ. Sci. Technol., 39, 3269–3278,
https://doi.org/10.1021/es049352m, 2005.
Liu, Y., Koutrakis, P., and Kahn, R.: Estimating Fine Particulate Matter
Component Concentrations and Size Distributions Using Satellite-Retrieved
Fractional Aerosol Optical Depth: Part 1 – Method Development, J. Air Waste
Manage., 57, 1351–1359, https://doi.org/10.3155/1047-3289.57.11.1351, 2007.
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., and Korkin, S.:
Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative
transfer basis and look-up tables, J. Geophys. Res.-Atmos., 116, D03210, https://doi.org/10.1029/2010JD014985, 2011a.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos., 116, D03210, https://doi.org/10.1029/2010JD014985, 2011b.
Lyapustin, A. I., Wang, Y., Laszlo, I., Hilker, T., Hall, F. G., Sellers, P.
J., Tucker, C. J., and Korkin, S. V.: Multi-angle implementation of
atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction, Remote
Sens. Environ., 127, 385–393, https://doi.org/10.1016/j.rse.2012.09.002, 2012.
Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder,
H., Lefer, B., Rappenglück, B., Flynn, J., and Leuchner, M.: Atmospheric
oxidation capacity in the summer of Houston 2006: Comparison with summer
measurements in other metropolitan studies, Atmos. Environ., 44,
4107–4115, https://doi.org/10.1016/j.atmosenv.2009.01.013, 2010.
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg,
P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.:
Ozone and organic nitrates over the eastern United States: Sensitivity to
isoprene chemistry, J. Geophys. Res.-Atmos., 118, 11256–11268,
https://doi.org/10.1002/jgrd.50817, 2013.
Marais, E. A. and Wiedinmyer, C.: Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa), Environ. Sci.
Technol., 50, 10739–10745, https://doi.org/10.1021/acs.est.6b02602, 2016.
Martin, R. V.: Satellite remote sensing of surface air quality, Atmos.
Environ., 42, 7823–7843, https://doi.org/10.1016/j.atmosenv.2008.07.018, 2008.
Martonchik, J. V., Kahn, R. A., and Diner, D. J.: Retrieval of aerosol
properties over land using MISR observations, in Satellite Aerosol Remote
Sensing over Land, edited by: Kokhanovsky, A. A. and de Leeuw, G., Springer, Berlin, Heidelberg, Germany,
267–293, 2009.
Mead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M.,
Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, T. F., Dicks, J., Lewis,
A., Cohen, J., Baron, R., Saffell, J. R., and Jones, R. L.: The use of
electrochemical sensors for monitoring urban air quality in low-cost,
high-density networks, Atmos. Environ., 70, 186–203,
https://doi.org/10.1016/j.atmosenv.2012.11.060, 2013.
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova,
A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G.
S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri,
M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei,
M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of
low-cost sensing technologies for air quality monitoring and exposure
assessment: How far have they gone?, Environ. Int., 116, 286–299,
https://doi.org/10.1016/j.envint.2018.04.018, 2018.
Patadia, F., Kahn, R. A., Limbacher, J. A., Burton, S. P., Ferrare, R. A., Hostetler, C. A., and Hair, J. W.: Aerosol airmass type mapping over the Urban Mexico City region from space-based multi-angle imaging, Atmos. Chem. Phys., 13, 9525–9541, https://doi.org/10.5194/acp-13-9525-2013, 2013.
Petkova, E. P., Jack, D. W., Volavka-Close, N. H., and Kinney, P. L.:
Particulate matter pollution in African cities, Air Qual. Atmos. Hlth.,
6, 603–614, https://doi.org/10.1007/s11869-013-0199-6, 2013.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products,
and Validation, J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1,
2005.
Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R., Lagrosas, N., Lestari, P., Ma, Z., Misra, A., Norford, L. K., Quel, E. J., Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., Liu, Y., Martins, J. V., Rudich, Y., and Martin, R. V.: Variation in global chemical composition of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16, 9629–9653, https://doi.org/10.5194/acp-16-9629-2016, 2016.
Sousan, S., Koehler, K., Hallett, L., and Peters, T. M.: Evaluation of the
Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol
spectrometer (PAS-1.108), Aerosol Sci. Tech., 50, 1352–1365,
https://doi.org/10.1080/02786826.2016.1232859, 2016.
Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine
particulate matter (PM2.5) and meteorological variables in the United
States: Implications for the sensitivity of PM2.5 to climate change, Atmos. Environ., 44, 3976–3984, https://doi.org/10.1016/j.atmosenv.2010.06.060, 2010.
US EPA: Evaluation of Emerging Air Sensor Performance, US EPA, available at:
https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-sensor-performance
(last access: 16 August 2020), 2016.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and Villeneuve, P. J.: Global Estimates of Ambient
Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical
Depth: Development and Application, Environ. Health Perspect., 118,
847–855, https://doi.org/10.1289/ehp.0901623, 2010.
Wang, J. and Christopher, S.A.: Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Weagle, C. L., Snider, G., Li, C., van Donkelaar, A., Philip, S.,
Bissonnette, P., Burke, J., Jackson, J., Latimer, R., Stone, E., Abboud, I.,
Akoshile, C., Anh, N. X., Brook, J. R., Cohen, A., Dong, J., Gibson, M. D.,
Griffith, D., He, K. B., Holben, B. N., Kahn, R., Keller, C. A., Kim, J. S.,
Lagrosas, N., Lestari, P., Khian, Y. L., Liu, Y., Marais, E. A., Martins, J.
V., Misra, A., Muliane, U., Pratiwi, R., Quel, E. J., Salam, A., Segev, L.,
Tripathi, S. N., Wang, C., Zhang, Q., Brauer, M., Rudich, Y., and Martin, R.
V.: Global Sources of Fine Particulate Matter: Interpretation of PM2.5
Chemical Composition Observed by SPARTAN using a Global Chemical Transport
Model, Environ. Sci. Technol., 52, 11670–11681,
https://doi.org/10.1021/acs.est.8b01658, 2018.
Zhang, H., Hoff ,R. M., and Engel-Cox, J. A.: The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by US Environmental Protection Agency regions, J. Air Waste Manage., 59, 1358–1369, https://doi.org/10.3155/1047-3289.59.11.1358, 2009.
Short summary
This paper presents a novel method to constrain the size distribution derived from low-cost optical particle counters (OPCs) using satellite data to develop higher-quality particulate matter (PM) estimates. Such estimates can enable cities that do not have access to expensive reference air quality monitors, especially those in the global south, to develop effective air quality management plans.
This paper presents a novel method to constrain the size distribution derived from low-cost...