Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6445-2020
https://doi.org/10.5194/amt-13-6445-2020
Research article
 | 
01 Dec 2020
Research article |  | 01 Dec 2020

Interpolation uncertainty of atmospheric temperature profiles

Alessandro Fassò, Michael Sommer, and Christoph von Rohden

Related authors

Radiosounding HARMonization (RHARM): a new homogenized dataset of radiosounding temperature, humidity and wind profiles with uncertainty
Fabio Madonna, Emanuele Tramutola, Souleymane Sy, Federico Serva, Monica Proto, Marco Rosoldi, Simone Gagliardi, Francesco Amato, Fabrizio Marra, Alessandro Fassò, Tom Gardiner, and Peter William Thorne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-183,https://doi.org/10.5194/essd-2020-183, 2020
Revised manuscript not accepted
Short summary
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
A. Fassò, R. Ignaccolo, F. Madonna, B. B. Demoz, and M. Franco-Villoria
Atmos. Meas. Tech., 7, 1803–1816, https://doi.org/10.5194/amt-7-1803-2014,https://doi.org/10.5194/amt-7-1803-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
The role of time averaging of eddy covariance fluxes on water use efficiency dynamics of maize
Arun Rao Karimindla, Shweta Kumari, Saipriya S R, Syam Chintala, and BVN P. Kambhammettu​​​​​​​
Atmos. Meas. Tech., 17, 5477–5490, https://doi.org/10.5194/amt-17-5477-2024,https://doi.org/10.5194/amt-17-5477-2024, 2024
Short summary
Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024,https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024,https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
Bias Correction and Application of Labeled Smartphone Pressure Data for Evaluating the Best Track of Landfalling Tropical Cyclones
Ge Qiao, Yuyao Cao, Qinghong Zhang, and Juanzhen Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1505,https://doi.org/10.5194/egusphere-2024-1505, 2024
Short summary

Cited articles

Alegria, A., Caro, S., Bevilacqua, M., Porcu, E., and Clarke, J.: Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere, Spat. Stat.-Neth., 22, 388–402, 2017. a
Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M., Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M., Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H., Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air Observations for Climate: From Concept to Reality, B. Am. Meteorol. Soc., 97, 123–135, https://doi.org/10.1175/BAMS-D-14-00072.1, 2016. a
Ceccherini, S., Carli, B., Tirelli, C., Zoppetti, N., Del Bianco, S., Cortesi, U., Kujanpää, J., and Dragani, R.: Importance of interpolation and coincidence errors in data fusion, Atmos. Meas. Tech., 11, 1009–1017, https://doi.org/10.5194/amt-11-1009-2018, 2018. a
Cressie, N. and Wikle, C.: Statistics for Spatio-Temporal Data, Wiley, New York, USA, 2011. a, b
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014. a
Download
Short summary
Modern radiosonde balloons fly from ground level up to the lower stratosphere and take temperature measurements. What is the uncertainty of interpolated values in the resulting atmospheric temperature profiles? To answer this question, we introduce a general statistical–mathematical model for the computation of interpolation uncertainty. Analysing more than 51 million measurements, we provide some understanding of the consequences of filling missing data with interpolated ones.