Articles | Volume 14, issue 2
Atmos. Meas. Tech., 14, 1457–1474, 2021
https://doi.org/10.5194/amt-14-1457-2021
Atmos. Meas. Tech., 14, 1457–1474, 2021
https://doi.org/10.5194/amt-14-1457-2021

Research article 24 Feb 2021

Research article | 24 Feb 2021

Spectral correction of turbulent energy damping on wind lidar measurements due to spatial averaging

Matteo Puccioni and Giacomo Valerio Iungo

Related authors

LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 1: Theoretical framework
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2065–2093, https://doi.org/10.5194/amt-14-2065-2021,https://doi.org/10.5194/amt-14-2065-2021, 2021
Short summary
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 2: Applications to lidar measurements of wind turbine wakes
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2095–2113, https://doi.org/10.5194/amt-14-2095-2021,https://doi.org/10.5194/amt-14-2095-2021, 2021
Short summary
Optimal tuning of engineering wake models through lidar measurements
Lu Zhan, Stefano Letizia, and Giacomo Valerio Iungo
Wind Energ. Sci., 5, 1601–1622, https://doi.org/10.5194/wes-5-1601-2020,https://doi.org/10.5194/wes-5-1601-2020, 2020
Short summary
Assessment of virtual towers performed with scanning wind lidars and Ka-band radars during the XPIA experiment
Mithu Debnath, Giacomo Valerio Iungo, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Scott Gunter, Julie K. Lundquist, John L. Schroeder, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 1215–1227, https://doi.org/10.5194/amt-10-1215-2017,https://doi.org/10.5194/amt-10-1215-2017, 2017
Short summary
Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans
Mithu Debnath, G. Valerio Iungo, Ryan Ashton, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Julie K. Lundquist, William J. Shaw, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 431–444, https://doi.org/10.5194/amt-10-431-2017,https://doi.org/10.5194/amt-10-431-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 1: Theoretical framework
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2065–2093, https://doi.org/10.5194/amt-14-2065-2021,https://doi.org/10.5194/amt-14-2065-2021, 2021
Short summary
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 2: Applications to lidar measurements of wind turbine wakes
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2095–2113, https://doi.org/10.5194/amt-14-2095-2021,https://doi.org/10.5194/amt-14-2095-2021, 2021
Short summary
Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam
Viktor A. Banakh, Igor N. Smalikho, and Andrey V. Falits
Atmos. Meas. Tech., 14, 1511–1524, https://doi.org/10.5194/amt-14-1511-2021,https://doi.org/10.5194/amt-14-1511-2021, 2021
Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021,https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
Hydrometeor classification of quasi-vertical profiles of polarimetric radar measurements using a top-down iterative hierarchical clustering method
Maryna Lukach, David Dufton, Jonathan Crosier, Joshua M. Hampton, Lindsay Bennett, and Ryan R. Neely III
Atmos. Meas. Tech., 14, 1075–1098, https://doi.org/10.5194/amt-14-1075-2021,https://doi.org/10.5194/amt-14-1075-2021, 2021
Short summary

Cited articles

Baars, W. J. and Marusic, I.: Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and A1, J. Fluid Mech., 882, A26, https://doi.org/10.1017/jfm.2019.835, 2020. a
Balasubramaniam, B. J.: Nature of turbulence in wall bounded flows, PhD thesis, University of Illinois at Urbana-Champaign, 2005. a, b
Banakh, V. A. and Werner C.: Computer simulation of coherent Doppler lidar measurement of wind velocity and retrieval of turbulent wind statistics, Opt. Eng., 44, 071205, https://doi.org/10.1117/1.1955167, 2005. a, b
Banerjee, T., Katul, G. G., Salesky, S. T., and Chamecki, M.: Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer, Q. J. Roy. Meteor. Soc., 141, 1699–1711, https://doi.org/10.1002/qj.2472, 2015. a
Bodini, N., Zardi, D., and Lundquist, J. K.: Three-dimensional structure of wind turbine wakes as measured by scanning lidar, Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017, 2017. a
Download
Short summary
A procedure for correcting the turbulent-energy damping connected with spatial averaging of wind lidars is proposed. This effect of the lidar measuring process is modeled through a low-pass filter, whose order and cut-off frequency are estimated directly from the lidar data. The proposed procedure is first assessed through simultaneous and colocated lidar and sonic-anemometer measurements. Then it is applied to several datasets collected at sites with different terrain roughness.