Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-5089-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-5089-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The high-frequency response correction of eddy covariance fluxes – Part 2: An experimental approach for analysing noisy measurements of small fluxes
Toprak Aslan
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
Olli Peltola
Climate Research Programme, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Andreas Ibrom
Dept. of Environmental Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
Eiko Nemitz
Edinburgh Research Station, UK Centre for Ecology and Hydrology (UKCEH), Bush Estate, Penicuik EH26 0QB, UK
Üllar Rannik
Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
Ivan Mammarella
Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
Related authors
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3654, https://doi.org/10.5194/egusphere-2024-3654, 2024
Short summary
Short summary
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted deciduous woodland, with flux measurements of H2 covering full seasonal cycles. We estimate annual H2 uptake of -3.1 ± 0.1 and -12.0 ± 0.4 kg H2 ha-1 yr-1 for the grassland and woodland sites, respectively. Soil moisture was found to be the primary driver of H2 uptake, with the clay content of the soils providing a physical barrier which limited H2 uptake.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martinez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-1994, https://doi.org/10.5194/egusphere-2024-1994, 2024
Short summary
Short summary
The emissions of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clearcut peatland forest site. The measurements covered the whole year of 2022 which was the second growing season after the clearcut. The site was a strong GHG source and the highest emissions came from CO2 followed by N2O and CH4. A statistical model that included information on different surfaces in the site was developed to unravel surface-type specific GHG fluxes.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1967, https://doi.org/10.5194/egusphere-2024-1967, 2024
Short summary
Short summary
Our research explores diverse ecosystems’ role in climate cooling via the concept of CarbonSink+ Potential. We measured CO2 uptake and loaal aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that while forests are vital regarding CarbonSink+ Potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resource to mitigate global warming.
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024, https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Short summary
The ratio between atmospheric O2 and CO2 can be used to characterize the carbon balance at the surface. By combining a model and observations from the Hyytiälä forest (Finland), we show that using atmospheric O2 and CO2 measurements from a single height provides a weak constraint on the surface CO2 exchange because large-scale processes such as entrainment confound this signal. We therefore recommend always using multiple heights of O2 and CO2 measurements to study surface CO2 exchange.
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2024-1644, https://doi.org/10.5194/egusphere-2024-1644, 2024
Short summary
Short summary
Boreal rivers are significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere but the controls of these emissions are uncertain. We measured four months of CO2 and CH4 exchange between a regulated boreal river and the atmosphere with eddy covariance. We found statistical relationships between the gas exchange and several environmental variables, the most important of which were dissolved CO2 partial pressure in water, wind speed, and water temperature.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873, https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe using ecosystem models, atmospheric inversions and up-scaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions and up-scaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-2559, https://doi.org/10.5194/egusphere-2023-2559, 2023
Short summary
Short summary
ML models are gaining popularity in biogeosciences. They are applied as gapfilling methods and used to upscale carbon fluxes to larger areas based on local measurements. In this study, we use Explainable ML methods to elucidate performance of machine learning models for carbon dioxide fluxes in boreal forest. We show that statistically equal models treat input variables differently. Explainable ML can help scientists to make informed solutions when applying ML models in their research.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Alessandro Zanchetta, Linda M. J. Kooijmans, Steven van Heuven, Andrea Scifo, Hubertus A. Scheeren, Ivan Mammarella, Ute Karstens, Jin Ma, Maarten Krol, and Huilin Chen
Biogeosciences, 20, 3539–3553, https://doi.org/10.5194/bg-20-3539-2023, https://doi.org/10.5194/bg-20-3539-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) has been suggested as a tool to estimate carbon dioxide (CO2) uptake by plants during photosynthesis. However, understanding its sources and sinks is critical to preventing biases in this estimate. Combining observations and models, this study proves that regional sources occasionally influence the measurements at the 60 m tall Lutjewad tower (1 m a.s.l.; 53°24′ N, 6°21′ E) in the Netherlands. Moreover, it estimates nighttime COS fluxes to be −3.0 ± 2.6 pmol m−2 s−1.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023, https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Short summary
In this study, for the first time in South Asia we compare simulated ammonia, ammonium, and total ammonia using the WRF-Chem model and MARGA measurements during winter in the Indo-Gangetic Plain region. Since observations show HCl promotes the fraction of high chlorides in Delhi, we added HCl / Cl emissions to the model. We conducted three sensitivity experiments with changes in HCl emissions, and improvements are reported in accurately simulating ammonia, ammonium, and total ammonia.
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023, https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary
Short summary
This paper investigates the sources of isoprene and monoterpene compounds and their particulate-phase oxidation products in Delhi, India. This was done to improve our understanding of the sources, concentrations, and fate of volatile emissions in megacities. By studying the chemical composition of offline filter samples, we report that a significant share of the oxidised organic aerosol in Delhi is from isoprene and monoterpenes. This has implications for human health and policy development.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Kukka-Maaria Kohonen, Roderick Dewar, Gianluca Tramontana, Aleksanteri Mauranen, Pasi Kolari, Linda M. J. Kooijmans, Dario Papale, Timo Vesala, and Ivan Mammarella
Biogeosciences, 19, 4067–4088, https://doi.org/10.5194/bg-19-4067-2022, https://doi.org/10.5194/bg-19-4067-2022, 2022
Short summary
Short summary
Four different methods for quantifying photosynthesis (GPP) at ecosystem scale were tested, of which two are based on carbon dioxide (CO2) and two on carbonyl sulfide (COS) flux measurements. CO2-based methods are traditional partitioning, and a new method uses machine learning. We introduce a novel method for calculating GPP from COS fluxes, with potentially better applicability than the former methods. Both COS-based methods gave on average higher GPP estimates than the CO2-based estimates.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Short summary
Properties of seasonally ice-covered lakes are not currently sufficiently included in global climate models. To fill this gap, this study evaluates three models that could be used to quantify the amount of heat that moves from and into the lake by the air above it and through evaporation of the ice cover. The results show that the complex nature of the surrounding environment as well as difficulties in accurately measuring the surface temperature of ice introduce errors to these models.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Auke J. Visser, Laurens N. Ganzeveld, Ignacio Goded, Maarten C. Krol, Ivan Mammarella, Giovanni Manca, and K. Folkert Boersma
Atmos. Chem. Phys., 21, 18393–18411, https://doi.org/10.5194/acp-21-18393-2021, https://doi.org/10.5194/acp-21-18393-2021, 2021
Short summary
Short summary
Dry deposition is an important sink for tropospheric ozone that affects ecosystem carbon uptake, but process understanding remains incomplete. We apply a common deposition representation in atmospheric chemistry models and a multi-layer canopy model to multi-year ozone deposition observations. The multi-layer canopy model performs better on diurnal timescales compared to the common approach, leading to a substantially improved simulation of ozone deposition and vegetation ozone impact metrics.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021, https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Short summary
We evaluated the suitability of fiber-optic distributed temperature sensing (DTS) for observing spatial (>25 cm) and temporal (>1 s) details of airflow within and above forests. The DTS measurements could discern up to third-order moments of the flow and observe spatial details of coherent flow motions. Similar measurements are not possible with more conventional measurement techniques. Hence, the DTS measurements will provide key insights into flows close to roughness elements, e.g. trees.
Elisa Vainio, Olli Peltola, Ville Kasurinen, Antti-Jussi Kieloaho, Eeva-Stiina Tuittila, and Mari Pihlatie
Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, https://doi.org/10.5194/bg-18-2003-2021, 2021
Short summary
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
Gareth J. Stewart, Beth S. Nelson, W. Joe F. Acton, Adam R. Vaughan, Naomi J. Farren, James R. Hopkins, Martyn W. Ward, Stefan J. Swift, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2407–2426, https://doi.org/10.5194/acp-21-2407-2021, https://doi.org/10.5194/acp-21-2407-2021, 2021
Short summary
Short summary
Biomass burning releases many lower-molecular-weight organic species which are difficult to analyse but important for the formation of organic aerosol. This study examined a new high-resolution technique to better characterise these difficult-to-analyse organic components. Some burning sources analysed in this study, such as cow dung cake and municipal solid waste, released extremely complex mixtures containing many thousands of different lower-volatility organic compounds.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Tamara Emmerichs, Astrid Kerkweg, Huug Ouwersloot, Silvano Fares, Ivan Mammarella, and Domenico Taraborrelli
Geosci. Model Dev., 14, 495–519, https://doi.org/10.5194/gmd-14-495-2021, https://doi.org/10.5194/gmd-14-495-2021, 2021
Short summary
Short summary
Dry deposition to vegetation is a major sink of ground-level ozone. Its parameterization in atmospheric chemistry models represents a significant source of uncertainty for global tropospheric ozone. We extended the current model parameterization with a relevant pathway and important meteorological adjustment factors. The comparison with measurements shows that this enables a more realistic model representation of ozone dry deposition velocity. Globally, annual dry deposition loss increases.
Y. Sim Tang, Chris R. Flechard, Ulrich Dämmgen, Sonja Vidic, Vesna Djuricic, Marta Mitosinkova, Hilde T. Uggerud, Maria J. Sanz, Ivan Simmons, Ulrike Dragosits, Eiko Nemitz, Marsailidh Twigg, Netty van Dijk, Yannick Fauvel, Francisco Sanz, Martin Ferm, Cinzia Perrino, Maria Catrambone, David Leaver, Christine F. Braban, J. Neil Cape, Mathew R. Heal, and Mark A. Sutton
Atmos. Chem. Phys., 21, 875–914, https://doi.org/10.5194/acp-21-875-2021, https://doi.org/10.5194/acp-21-875-2021, 2021
Short summary
Short summary
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4+, NO3−, SO42−, Cl−, Na+) across Europe (2006–2010). Differences in spatial and temporal concentrations and patterns between geographic regions and four ecosystem types were captured. NH3 and NH4NO3 were dominant components, highlighting their growing relative importance in ecosystem impacts (acidification, eutrophication) and human health effects (NH3 as a precursor to PM2.5) in Europe.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Kukka-Maaria Kohonen, Pasi Kolari, Linda M. J. Kooijmans, Huilin Chen, Ulli Seibt, Wu Sun, and Ivan Mammarella
Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020, https://doi.org/10.5194/amt-13-3957-2020, 2020
Short summary
Short summary
Biosphere–atmosphere gas exchange (flux) measurements of carbonyl sulfide (COS) are becoming popular for estimating biospheric photosynthesis. To compare COS flux measurements across different measurement sites, we need standardized protocols for data processing. We analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we aim to settle on a set of recommended protocols for COS flux calculation.
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020, https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary
Short summary
Remote sensing only provides snapshots of rapidly changing land surface variables; this limits its application for water resources and ecosystem management. To obtain continuous estimates of surface temperature, soil moisture, evapotranspiration, and ecosystem productivity, a simple and operational modelling scheme is presented. We demonstrate it with temporally sparse optical and thermal remote sensing data from an unmanned aerial system at a Danish bioenergy plantation eddy covariance site.
Xuefei Li, Outi Wahlroos, Sami Haapanala, Jukka Pumpanen, Harri Vasander, Anne Ojala, Timo Vesala, and Ivan Mammarella
Biogeosciences, 17, 3409–3425, https://doi.org/10.5194/bg-17-3409-2020, https://doi.org/10.5194/bg-17-3409-2020, 2020
Short summary
Short summary
We measured CO2 and CH4 fluxes and quantified the global warming potential of different surface areas in a recently created urban wetland in Southern Finland. The ecosystem has a small net climate warming effect which was mainly contributed by the open-water areas. Our results suggest that limiting open-water areas and setting a design preference for areas of emergent vegetation in the establishment of urban wetlands can be a beneficial practice when considering solely the climate impact.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019, https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Short summary
We assess the differences of six stomatal conductance formulations, embedded into a land–vegetation model JSBACH, on 10 boreal coniferous evergreen forest sites. We calibrate the model parameters using all six functions in a multi-year experiment, as well as for a separate drought event at one of the sites, using the adaptive population importance sampler. The analysis reveals weaknesses in the stomatal conductance formulation-dependent model behaviour that we are able to partially amend.
Petri Kiuru, Anne Ojala, Ivan Mammarella, Jouni Heiskanen, Kukka-Maaria Erkkilä, Heli Miettinen, Timo Vesala, and Timo Huttula
Biogeosciences, 16, 3297–3317, https://doi.org/10.5194/bg-16-3297-2019, https://doi.org/10.5194/bg-16-3297-2019, 2019
Short summary
Short summary
Many boreal lakes emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We incorporated four different gas exchange models into a physico-biochemical lake model and studied their ability to simulate lake air–water CO2 fluxes. The inclusion of refined gas exchange models in lake models that simulate carbon cycling is important to assess lake carbon budgets. However, higher estimates for inorganic carbon sources in boreal lakes are needed to balance the CO2 losses to the atmosphere.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Carole Helfter, Neil Mullinger, Massimo Vieno, Simon O'Doherty, Michel Ramonet, Paul I. Palmer, and Eiko Nemitz
Atmos. Chem. Phys., 19, 3043–3063, https://doi.org/10.5194/acp-19-3043-2019, https://doi.org/10.5194/acp-19-3043-2019, 2019
Short summary
Short summary
We present a novel approach to estimate the annual budgets of carbon dioxide (881.0 ± 128.5 Tg) and methane (2.55 ± 0.48 Tg) of the British Isles from shipborne measurements taken over a 3-year period (2015–2017). This study brings independent verification of the emission budgets estimated using alternative products and investigates the seasonality of these emissions, which is usually not possible.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Qiaozhi Zha, Chao Yan, Heikki Junninen, Matthieu Riva, Nina Sarnela, Juho Aalto, Lauriane Quéléver, Simon Schallhart, Lubna Dada, Liine Heikkinen, Otso Peräkylä, Jun Zou, Clémence Rose, Yonghong Wang, Ivan Mammarella, Gabriel Katul, Timo Vesala, Douglas R. Worsnop, Markku Kulmala, Tuukka Petäjä, Federico Bianchi, and Mikael Ehn
Atmos. Chem. Phys., 18, 17437–17450, https://doi.org/10.5194/acp-18-17437-2018, https://doi.org/10.5194/acp-18-17437-2018, 2018
Short summary
Short summary
Vertical measurements of highly oxygenated molecules (HOMs) below and above the forest canopy were performed for the first time in a boreal forest during September 2016. Our results highlight that near-ground HOM measurements may only be representative of a small fraction of the entire nocturnal boundary layer, which may sequentially influence the growth of newly formed particles and SOA formation close to ground surface, where the majority of measurements are conducted.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Marsailidh M. Twigg, Nicholas Cowan, Matthew R. Jones, Sarah R. Leeson, William J. Bloss, Louisa J. Kramer, Leigh Crilley, Matthias Sörgel, Meinrat Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 18, 16953–16978, https://doi.org/10.5194/acp-18-16953-2018, https://doi.org/10.5194/acp-18-16953-2018, 2018
Short summary
Short summary
Understanding the impact of agricultural activities on the atmosphere requires more measurements of inorganic trace gases and associated aerosol counterparts. This research presents 1 month of measurements above agricultural grassland during a period of fertiliser application. It was found that emissions of the important trace gases ammonia and nitrous acid peaked after fertiliser use and that the velocity at which the measured aerosols were deposited was dependent upon their size.
Leena Järvi, Üllar Rannik, Tom V. Kokkonen, Mona Kurppa, Ari Karppinen, Rostislav D. Kouznetsov, Pekka Rantala, Timo Vesala, and Curtis R. Wood
Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018, https://doi.org/10.5194/amt-11-5421-2018, 2018
Short summary
Short summary
Identical EC systems on two sides of a building in central Helsinki were used to assess the uncertainty of the vertical fluxes on the single measurement point from July 2013 to September 2015. Sampling at only one point yielded up to 12% underestimation in the cumulative carbon fluxes; for sensible and latent heat the respective values were up to 5 and 8%. The commonly used statistics, kurtosis and skewness, are not necessarily suitable for filtering out data in a densely built urban area.
Pertti Hari, Steffen Noe, Sigrid Dengel, Jan Elbers, Bert Gielen, Veli-Matti Kerminen, Bart Kruijt, Liisa Kulmala, Anders Lindroth, Ivan Mammarella, Tuukka Petäjä, Guy Schurgers, Anni Vanhatalo, Markku Kulmala, and Jaana Bäck
Atmos. Chem. Phys., 18, 13321–13328, https://doi.org/10.5194/acp-18-13321-2018, https://doi.org/10.5194/acp-18-13321-2018, 2018
Short summary
Short summary
The development of eddy-covariance measurements of ecosystem CO2 fluxes began a new era in the field studies of photosynthesis. The interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in seasonal transition times. We apply two theoretical needle-level equations and show they can predict photosynthetic CO2 flux between the atmosphere and Scots pine forests. This has strong implications for the interpretation of the global change and boreal forests.
Jason A. Ducker, Christopher D. Holmes, Trevor F. Keenan, Silvano Fares, Allen H. Goldstein, Ivan Mammarella, J. William Munger, and Jordan Schnell
Biogeosciences, 15, 5395–5413, https://doi.org/10.5194/bg-15-5395-2018, https://doi.org/10.5194/bg-15-5395-2018, 2018
Short summary
Short summary
We have developed an accurate method (SynFlux) to estimate ozone deposition and stomatal uptake across 103 flux tower sites (43 US, 60 Europe), where ozone concentrations and fluxes have not been measured. In all, the SynFlux public dataset provides monthly values of ozone dry deposition for 926 site years across a wide array of ecosystems. The SynFlux dataset will promote further applications to ecosystem, air quality, or climate modeling across the geoscience community.
Paul I. Palmer, Simon O'Doherty, Grant Allen, Keith Bower, Hartmut Bösch, Martyn P. Chipperfield, Sarah Connors, Sandip Dhomse, Liang Feng, Douglas P. Finch, Martin W. Gallagher, Emanuel Gloor, Siegfried Gonzi, Neil R. P. Harris, Carole Helfter, Neil Humpage, Brian Kerridge, Diane Knappett, Roderic L. Jones, Michael Le Breton, Mark F. Lunt, Alistair J. Manning, Stephan Matthiesen, Jennifer B. A. Muller, Neil Mullinger, Eiko Nemitz, Sebastian O'Shea, Robert J. Parker, Carl J. Percival, Joseph Pitt, Stuart N. Riddick, Matthew Rigby, Harjinder Sembhi, Richard Siddans, Robert L. Skelton, Paul Smith, Hannah Sonderfeld, Kieran Stanley, Ann R. Stavert, Angelina Wenger, Emily White, Christopher Wilson, and Dickon Young
Atmos. Chem. Phys., 18, 11753–11777, https://doi.org/10.5194/acp-18-11753-2018, https://doi.org/10.5194/acp-18-11753-2018, 2018
Short summary
Short summary
This paper provides an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) experiment. GAUGE was designed to quantify nationwide GHG emissions of the UK, bringing together measurements and atmospheric transport models. This novel experiment is the first of its kind. We anticipate it will inform the blueprint for countries that are building a measurement infrastructure in preparation for global stocktakes, which are a key part of the Paris Agreement.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Silvia Bucci, Paolo Cristofanelli, Stefano Decesari, Angela Marinoni, Silvia Sandrini, Johannes Größ, Alfred Wiedensohler, Chiara F. Di Marco, Eiko Nemitz, Francesco Cairo, Luca Di Liberto, and Federico Fierli
Atmos. Chem. Phys., 18, 5371–5389, https://doi.org/10.5194/acp-18-5371-2018, https://doi.org/10.5194/acp-18-5371-2018, 2018
Short summary
Short summary
This paper analyses some of the processes affecting PM levels over the Po Valley, one of the most polluted regions of Europe, during the 2012 summer campaigns. Under conditions of air transport from the Sahara, data show that desert dust can rapidly penetrate into the lower atmosphere, directly affecting the PM concentration at the ground. Processes of particles growth in high relative humidity and uplift of local soil particles, potentially affecting PM level, are also analysed.
Maria Provenzale, Anne Ojala, Jouni Heiskanen, Kukka-Maaria Erkkilä, Ivan Mammarella, Pertti Hari, and Timo Vesala
Biogeosciences, 15, 2021–2032, https://doi.org/10.5194/bg-15-2021-2018, https://doi.org/10.5194/bg-15-2021-2018, 2018
Short summary
Short summary
We extensively tested and refined a direct, high-frequency free-water CO2 measurement method to study the lake net ecosystem productivity. The method was first proposed in 2008, but neglected ever since.
With high-frequency direct methods, we can calculate the lake productivity more precisely, and parameterise its dependency on environmental variables. This helps us expand our knowledge on the carbon cycle in the water, and leads to a better integration of water bodies in carbon budgets.
Riinu Ots, Mathew R. Heal, Dominique E. Young, Leah R. Williams, James D. Allan, Eiko Nemitz, Chiara Di Marco, Anais Detournay, Lu Xu, Nga L. Ng, Hugh Coe, Scott C. Herndon, Ian A. Mackenzie, David C. Green, Jeroen J. P. Kuenen, Stefan Reis, and Massimo Vieno
Atmos. Chem. Phys., 18, 4497–4518, https://doi.org/10.5194/acp-18-4497-2018, https://doi.org/10.5194/acp-18-4497-2018, 2018
Short summary
Short summary
The main hypothesis of this paper is that people who live in large cities in the UK disobey the
smoke control lawas it has not been actively enforced for decades now. However, the use of wood in residential heating has increased, partly due to renewable energy targets, but also for discretionary (i.e. pleasant fireplaces) reasons. Our study is based mainly in London, but similar struggles with urban air quality due to residential wood and coal burning are seen in other major European cities.
Jouni Susiluoto, Maarit Raivonen, Leif Backman, Marko Laine, Jarmo Makela, Olli Peltola, Timo Vesala, and Tuula Aalto
Geosci. Model Dev., 11, 1199–1228, https://doi.org/10.5194/gmd-11-1199-2018, https://doi.org/10.5194/gmd-11-1199-2018, 2018
Short summary
Short summary
Methane is an important greenhouse gas and methane emissions from wetlands contribute to the warming of the climate. Wetland methane emissions are also challenging to estimate. We analyze the performance of a new wetland emission computer model utilizing mathematical methods and using data from a wetland in southern Finland. The analysis helps to explain how wetlands produce methane and how emission modeling can be improved and uncertainties in the emission estimates reduced in future studies.
Aino Korrensalo, Elisa Männistö, Pavel Alekseychik, Ivan Mammarella, Janne Rinne, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018, https://doi.org/10.5194/bg-15-1749-2018, 2018
Short summary
Short summary
We measured methane fluxes of a boreal bog from six different plant community types in 2012–2014. We found only little variation in methane fluxes among plant community types. Peat temperature as well as both leaf area of plant species with air channels and of all vegetation are important factors controlling the fluxes. We also detected negative net fluxes indicating methane consumption each year. Our results can be used to improve the models of peatland methane dynamics under climate change.
Olli Peltola, Maarit Raivonen, Xuefei Li, and Timo Vesala
Biogeosciences, 15, 937–951, https://doi.org/10.5194/bg-15-937-2018, https://doi.org/10.5194/bg-15-937-2018, 2018
Short summary
Short summary
Emission via bubbling, i.e. ebullition, is one of the main CH4 emission pathways from wetlands to the atmosphere, yet it is still coarsely represented in wetland CH4 models. In this study three ebullition modelling approaches are evaluated. Modeled annual CH4 emissions were similar, whereas temporal variability in CH4 emissions varied an order of magnitude between the approaches. Hence realistic description of ebullition is needed when models are compared to and calibrated against measurements.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Wu Sun, Linda M. J. Kooijmans, Kadmiel Maseyk, Huilin Chen, Ivan Mammarella, Timo Vesala, Janne Levula, Helmi Keskinen, and Ulli Seibt
Atmos. Chem. Phys., 18, 1363–1378, https://doi.org/10.5194/acp-18-1363-2018, https://doi.org/10.5194/acp-18-1363-2018, 2018
Short summary
Short summary
Most soils consume carbonyl sulfide (COS) and CO due to microbial uptake, but whether boreal forest soils act like this is uncertain. We measured growing season soil COS and CO fluxes in a Finnish pine forest. The soil behaved as a consistent and relatively invariant sink of COS and CO. Uptake rates of COS and CO decrease with soil moisture due to diffusion limitation and increase with respiration because of microbial control. Using COS to infer photosynthesis is not affected by soil COS flux.
Simon Schallhart, Pekka Rantala, Maija K. Kajos, Juho Aalto, Ivan Mammarella, Taina M. Ruuskanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 815–832, https://doi.org/10.5194/acp-18-815-2018, https://doi.org/10.5194/acp-18-815-2018, 2018
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) have impact to air quality, human health and climate. We investigated the development of VOC exchange in a boreal forest between April and June 2013. VOC exchange and diversity increased towards summer, but over 75 % of the biogenic net exchange was driven by methanol, monoterpenes and acetone only. The boreal forest emitted less than 0.2 % carbon in form of VOCs in relation to the carbon uptake.
Kukka-Maaria Erkkilä, Anne Ojala, David Bastviken, Tobias Biermann, Jouni J. Heiskanen, Anders Lindroth, Olli Peltola, Miitta Rantakari, Timo Vesala, and Ivan Mammarella
Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, https://doi.org/10.5194/bg-15-429-2018, 2018
Short summary
Short summary
Global estimates of freshwater greenhouse gas emissions are usually based on simple gas transfer models that underestimate the emissions. Thus, comparison of different gas transfer models is required for evaluating the uncertainties. This study compares three commonly used methods for estimating greenhouse gas emissions over lakes. We conclude that simple gas transfer models underestimate the emissions and more recent models should be used for global freshwater greenhouse gas emission estimates.
Maarit Raivonen, Sampo Smolander, Leif Backman, Jouni Susiluoto, Tuula Aalto, Tiina Markkanen, Jarmo Mäkelä, Janne Rinne, Olli Peltola, Mika Aurela, Annalea Lohila, Marin Tomasic, Xuefei Li, Tuula Larmola, Sari Juutinen, Eeva-Stiina Tuittila, Martin Heimann, Sanna Sevanto, Thomas Kleinen, Victor Brovkin, and Timo Vesala
Geosci. Model Dev., 10, 4665–4691, https://doi.org/10.5194/gmd-10-4665-2017, https://doi.org/10.5194/gmd-10-4665-2017, 2017
Short summary
Short summary
Wetlands are one of the most significant natural sources of the strong greenhouse gas methane. We developed a model that can be used within a larger wetland carbon model to simulate the methane emissions. In this study, we present the model and results of its testing. We found that the model works well with different settings and that the results depend primarily on the rate of input anoxic soil respiration and also on factors that affect the simulated oxygen concentrations in the wetland soil.
Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz
Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, https://doi.org/10.5194/bg-14-5571-2017, 2017
Short summary
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
Putian Zhou, Laurens Ganzeveld, Ditte Taipale, Üllar Rannik, Pekka Rantala, Matti Petteri Rissanen, Dean Chen, and Michael Boy
Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017, https://doi.org/10.5194/acp-17-14309-2017, 2017
Short summary
Short summary
In boreal forest, there is a large number of gaseous organic compounds called biogenic volatile organic compounds (BVOCs). Within the canopy, they can be emitted from vegetation and soil, react with each other and other gases, be transported in the air, and be removed from vegetation and soil surfaces. We applied a numerical model to simulate these processes and found that these BVOCs can be divided into five categories according to the significance of their sources and sinks.
Mikko Auvinen, Leena Järvi, Antti Hellsten, Üllar Rannik, and Timo Vesala
Geosci. Model Dev., 10, 4187–4205, https://doi.org/10.5194/gmd-10-4187-2017, https://doi.org/10.5194/gmd-10-4187-2017, 2017
Short summary
Short summary
Correct spatial interpretation of a micrometeorological measurement requires the determination of its effective source area, or footprint. In urban areas the use of analytical models becomes highly questionable. This work introduces a computational methodology that enables the generation of footprints for complex urban sites. The methodology is based on conducting high-resolution flow and particle analysis on a model that features a detailed topographic description of a real city environment.
Yao Gao, Tiina Markkanen, Mika Aurela, Ivan Mammarella, Tea Thum, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences, 14, 4409–4422, https://doi.org/10.5194/bg-14-4409-2017, https://doi.org/10.5194/bg-14-4409-2017, 2017
Short summary
Short summary
We investigated the response of water use efficiency (WUE) to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using EC flux data from the Hyytiälä (southern Finland) flux site. Simulation results from the JSBACH land surface model were also evaluated against the observed results. The performance of three WUE metrics at the ecosystem level (EWUE, IWUE, and uWUE) during the severe summer drought were studied and showed different results.
Linda M. J. Kooijmans, Kadmiel Maseyk, Ulli Seibt, Wu Sun, Timo Vesala, Ivan Mammarella, Pasi Kolari, Juho Aalto, Alessandro Franchin, Roberta Vecchi, Gianluigi Valli, and Huilin Chen
Atmos. Chem. Phys., 17, 11453–11465, https://doi.org/10.5194/acp-17-11453-2017, https://doi.org/10.5194/acp-17-11453-2017, 2017
Short summary
Short summary
Carbon cycle studies rely on the accuracy of models to estimate the amount of CO2 being taken up by vegetation. The gas carbonyl sulfide (COS) can serve as a tool to estimate the vegetative CO2 uptake by scaling the ecosystem uptake of COS to that of CO2. Here we investigate the nighttime fluxes of COS. The relationships found in this study will aid in implementing nighttime COS uptake in models, which is key to obtain accurate estimates of vegetative CO2 uptake with the use of COS.
Andrea Móring, Massimo Vieno, Ruth M. Doherty, Celia Milford, Eiko Nemitz, Marsailidh M. Twigg, László Horváth, and Mark A. Sutton
Biogeosciences, 14, 4161–4193, https://doi.org/10.5194/bg-14-4161-2017, https://doi.org/10.5194/bg-14-4161-2017, 2017
Short summary
Short summary
This study describes and evaluates a new ammonia (NH3) exchange model for grazed fields (GAG_field). GAG_field is able to simulate the main features of the observed NH3 fluxes. A sensitivity analysis for the non-meteorological model parameters showed that the sensitivity of the NH3 fluxes to a parameter varies among urine patches. Moreover, the fluxes modelled with a dynamic soil pH are similar if a constant pH 7.5 is used, suggesting a useful simplification for regional-scale model application.
Pavel Alekseychik, Ivan Mammarella, Dmitry Karpov, Sigrid Dengel, Irina Terentieva, Alexander Sabrekov, Mikhail Glagolev, and Elena Lapshina
Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, https://doi.org/10.5194/acp-17-9333-2017, 2017
Short summary
Short summary
West Siberian peatlands occupy a large fraction of land area in the region, and yet little is known about their interaction with the atmosphere. We took the first measurements of CO2 and energy surface balances over a typical bog of West Siberian middle taiga, in the vicinity of the Mukhrino field station (Khanty–Mansiysk). The May–August study in a wet year (2015) revealed a relatively large photosynthetic sink of CO2 that was close to the high end of estimates at bog sites elsewhere.
Stephanie K. Jones, Carole Helfter, Margaret Anderson, Mhairi Coyle, Claire Campbell, Daniela Famulari, Chiara Di Marco, Netty van Dijk, Y. Sim Tang, Cairistiona F. E. Topp, Ralf Kiese, Reimo Kindler, Jan Siemens, Marion Schrumpf, Klaus Kaiser, Eiko Nemitz, Peter E. Levy, Robert M. Rees, Mark A. Sutton, and Ute M. Skiba
Biogeosciences, 14, 2069–2088, https://doi.org/10.5194/bg-14-2069-2017, https://doi.org/10.5194/bg-14-2069-2017, 2017
Short summary
Short summary
We assessed the nitrogen (N), carbon (C) and greenhouse gas (GHG) budget from an intensively managed grassland in southern Scotland using flux budget calculations as well as changes in soil N and C pools over time. Estimates from flux budget calculations indicated that N and C were sequestered, whereas soil stock measurements indicated a smaller N storage and a loss of C from the ecosystem. The GHG sink strength of the net CO2 ecosystem exchange was strongly affected by CH4 and N2O emissions.
Andreas Brændholt, Klaus Steenberg Larsen, Andreas Ibrom, and Kim Pilegaard
Biogeosciences, 14, 1603–1616, https://doi.org/10.5194/bg-14-1603-2017, https://doi.org/10.5194/bg-14-1603-2017, 2017
Short summary
Short summary
In this study we found that CO2 fluxes from soil measured by the closed-chamber technique were overestimated during low atmospheric turbulence. This resulted in biased courses of CO2 fluxes during a day. We removed CO2 fluxes measured at low turbulence, which gave better flux estimates. We furthermore tested a novel technique that provided good measurement during low turbulence, thereby giving better estimates of CO2 emissions from soils, which is a crucial part of the global carbon cycle.
Christian Brümmer, Bjarne Lyshede, Dirk Lempio, Jean-Pierre Delorme, Jeremy J. Rüffer, Roland Fuß, Antje M. Moffat, Miriam Hurkuck, Andreas Ibrom, Per Ambus, Heinz Flessa, and Werner L. Kutsch
Biogeosciences, 14, 1365–1381, https://doi.org/10.5194/bg-14-1365-2017, https://doi.org/10.5194/bg-14-1365-2017, 2017
Short summary
Short summary
We present a novel chamber design for measuring soil–atmosphere N2O fluxes and compare the performance of a commonly applied gas chromatography (GC) setup with laser-based (QCL) concentration detection. While GC was still a useful method for longer-term investigations, we found that closure times of 10 min and sampling every 5 s is sufficient when using a QCL system. Further, extremely low standard errors (< 2 % of flux value) were observed regardless of linear or exponential flux calculation.
Antti-Jussi Kieloaho, Mari Pihlatie, Samuli Launiainen, Markku Kulmala, Marja-Liisa Riekkola, Jevgeni Parshintsev, Ivan Mammarella, Timo Vesala, and Jussi Heinonsalo
Biogeosciences, 14, 1075–1091, https://doi.org/10.5194/bg-14-1075-2017, https://doi.org/10.5194/bg-14-1075-2017, 2017
Short summary
Short summary
The alkylamines are important precursors in secondary aerosol formation in boreal forests. We quantified alkylamine concentrations in fungal species present in boreal forests in order to estimate soil as a source of atmospheric alkylamines. Based on our knowledge we estimated possible soil–atmosphere exchange of these compounds. The results shows that the boreal forest soil could act as a source of alkylamines depending on environmental conditions and studied compound.
Putian Zhou, Laurens Ganzeveld, Üllar Rannik, Luxi Zhou, Rosa Gierens, Ditte Taipale, Ivan Mammarella, and Michael Boy
Atmos. Chem. Phys., 17, 1361–1379, https://doi.org/10.5194/acp-17-1361-2017, https://doi.org/10.5194/acp-17-1361-2017, 2017
Short summary
Short summary
We implemented a multi-layer O3 dry deposition model in a 1-D model SOSAA to simulate O3 flux and concentration within and above a boreal forest at SMEAR II in Hyytiälä, Finland, in August 2010. The results showed that when RH > 70 % the O3 uptake on leaf wet skin was ~ 51 % to the total deposition at night and ~ 19 % at daytime. The sub-canopy contribution below 4.2 m was ~ 38 % at daytime. The averaged daily chemical contribution to total O3 alteration inside the canopy was less than 10 %.
Aino Korrensalo, Pavel Alekseychik, Tomáš Hájek, Janne Rinne, Timo Vesala, Lauri Mehtätalo, Ivan Mammarella, and Eeva-Stiina Tuittila
Biogeosciences, 14, 257–269, https://doi.org/10.5194/bg-14-257-2017, https://doi.org/10.5194/bg-14-257-2017, 2017
Short summary
Short summary
Photosynthetic parameters of peatland plant species were measured over one growing season in an ombrotrophic bog. Based on these measurements, ecosystem-level photosynthesis was calculated for the whole growing season and compared with an estimate derived from micrometeorological measurements. These two estimates corresponded well. Species with low areal cover at the site but high photosynthetic efficiency appeared to be potentially important for the ecosystem-level carbon balance.
Jarmo Mäkelä, Jouni Susiluoto, Tiina Markkanen, Mika Aurela, Heikki Järvinen, Ivan Mammarella, Stefan Hagemann, and Tuula Aalto
Nonlin. Processes Geophys., 23, 447–465, https://doi.org/10.5194/npg-23-447-2016, https://doi.org/10.5194/npg-23-447-2016, 2016
Short summary
Short summary
The land-based hydrological cycle is one of the key processes controlling the growth and wilting of plants and the amount of carbon vegetation can assimilate. Recent studies have shown that many land surface models have biases in this area. We optimized parameters in one such model (JSBACH) and were able to enhance the model performance in many respects, but the response to drought remained unaffected. Further studies into this aspect should include alternative stomatal conductance formulations.
Riinu Ots, Massimo Vieno, James D. Allan, Stefan Reis, Eiko Nemitz, Dominique E. Young, Hugh Coe, Chiara Di Marco, Anais Detournay, Ian A. Mackenzie, David C. Green, and Mathew R. Heal
Atmos. Chem. Phys., 16, 13773–13789, https://doi.org/10.5194/acp-16-13773-2016, https://doi.org/10.5194/acp-16-13773-2016, 2016
Short summary
Short summary
Emissions of cooking organic aerosol (COA; from charbroiling, frying, etc.) are currently absent in European emissions inventories yet measurements have pointed to significant COA concentrations. In this study, emissions of COA were developed for the UK by model iteration against year-long measurements at two sites in London. Modelled COA dropped rapidly outside of major urban areas, suggesting that although a notable component in UK urban air, COA does not have a significant effect on rural PM.
Üllar Rannik, Olli Peltola, and Ivan Mammarella
Atmos. Meas. Tech., 9, 5163–5181, https://doi.org/10.5194/amt-9-5163-2016, https://doi.org/10.5194/amt-9-5163-2016, 2016
Short summary
Short summary
We review available methods for the random error estimation of turbulent fluxes that are widely used by the flux community. Flux errors are evaluated theoretically as well as via numerical calculations by using measured and simulated records. We recommend two flux random errors with clear physical meaning: the total error resulting from stochastic nature of turbulence, well approximated by the method of Finkelstein and Sims (2001), and the error of the flux due to the instrumental noise.
Ivan Mammarella, Olli Peltola, Annika Nordbo, Leena Järvi, and Üllar Rannik
Atmos. Meas. Tech., 9, 4915–4933, https://doi.org/10.5194/amt-9-4915-2016, https://doi.org/10.5194/amt-9-4915-2016, 2016
Short summary
Short summary
In this study we have performed an inter-comparison between EddyUH and EddyPro, two public and commonly used software packages for eddy covariance data processing and calculation. The aims are to estimate the flux uncertainty due to the use of different software packages, and to assess the most critical processing steps, determining the largest deviations in the calculated fluxes. We focus not only on water vapour and carbon dioxide fluxes, but also on the methane flux.
Mari Pihlatie, Üllar Rannik, Sami Haapanala, Olli Peltola, Narasinha Shurpali, Pertti J. Martikainen, Saara Lind, Niina Hyvönen, Perttu Virkajärvi, Mark Zahniser, and Ivan Mammarella
Biogeosciences, 13, 5471–5485, https://doi.org/10.5194/bg-13-5471-2016, https://doi.org/10.5194/bg-13-5471-2016, 2016
Short summary
Short summary
The sources and sinks of carbon monoxide (CO) in the biosphere are poorly understood. We report the first continuous data series of CO fluxes measured by eddy covariance method in an agricultural bioenergy crop. The CO fluxes were seasonally and diurnally variable demonstrating the parallel consumption and production processes. Radiation was the main driver of CO emissions, and the eddy covariance method was demonstrated as suitable for linking short-term flux dynamics to environmental drivers.
Marsailidh M. Twigg, Evgenia Ilyinskaya, Sonya Beccaceci, David C. Green, Matthew R. Jones, Ben Langford, Sarah R. Leeson, Justin J. N. Lingard, Gloria M. Pereira, Heather Carter, Jan Poskitt, Andreas Richter, Stuart Ritchie, Ivan Simmons, Ron I. Smith, Y. Sim Tang, Netty Van Dijk, Keith Vincent, Eiko Nemitz, Massimo Vieno, and Christine F. Braban
Atmos. Chem. Phys., 16, 11415–11431, https://doi.org/10.5194/acp-16-11415-2016, https://doi.org/10.5194/acp-16-11415-2016, 2016
Short summary
Short summary
This study integrates high and low resolution temporal measurements to assess the impact of the Holuhraun effusive eruption in 2014 across the UK. Measurements, modelling and satellite analysis provides details on the transport and chemistry of both gases and particulates during this unique event. The results of the study can be used verify existing atmospheric chemistry models of volcano plumes in order to carry improved risk assessments for future volcanic eruptions.
Undine Zöll, Christian Brümmer, Frederik Schrader, Christof Ammann, Andreas Ibrom, Christophe R. Flechard, David D. Nelson, Mark Zahniser, and Werner L. Kutsch
Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, https://doi.org/10.5194/acp-16-11283-2016, 2016
Short summary
Short summary
Accurate quantification of atmospheric ammonia concentration and exchange fluxes with the land surface has been a major metrological challenge. We demonstrate the applicability of a novel laser device to identify concentration and flux patterns over a peatland ecosystem influenced by nearby agricultural practices. Results help to strengthen air quality monitoring networks, lead to better understanding of ecosystem functionality and improve parameterizations in air chemistry and transport models.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Andrey Glazunov, Üllar Rannik, Victor Stepanenko, Vasily Lykosov, Mikko Auvinen, Timo Vesala, and Ivan Mammarella
Geosci. Model Dev., 9, 2925–2949, https://doi.org/10.5194/gmd-9-2925-2016, https://doi.org/10.5194/gmd-9-2925-2016, 2016
Short summary
Short summary
Large-eddy simulation (LES) and Lagrangian stochastic modeling of passive particle dispersion were applied to the scalar flux footprint determination in the stable atmospheric boundary layer. The footprint functions obtained in LES were compared with the functions calculated with the use of first-order single-particle Lagrangian stochastic models (LSMs) and zeroth-order Lagrangian stochastic models - the random displacement models (RDMs).
Carole Helfter, Anja H. Tremper, Christoforos H. Halios, Simone Kotthaus, Alex Bjorkegren, C. Sue B. Grimmond, Janet F. Barlow, and Eiko Nemitz
Atmos. Chem. Phys., 16, 10543–10557, https://doi.org/10.5194/acp-16-10543-2016, https://doi.org/10.5194/acp-16-10543-2016, 2016
Short summary
Short summary
There are relatively few long-term, direct measurements of pollutant emissions in urban settings. We present over 3 years of measurements of fluxes of CO, CO2 and CH4, study their respective temporal and spatial dynamics and offer an independent verification of the London Atmospheric Emissions Inventory. CO and CO2 were strongly controlled by traffic and well characterised by the inventory whilst measured CH4 was two-fold larger and linked to natural gas usage and perhaps biogenic sources.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Natalia Babkovskaia, Ullar Rannik, Vaughan Phillips, Holger Siebert, Birgit Wehner, and Michael Boy
Atmos. Chem. Phys., 16, 7889–7898, https://doi.org/10.5194/acp-16-7889-2016, https://doi.org/10.5194/acp-16-7889-2016, 2016
Short summary
Short summary
Turbulence, aerosol growth and microphysics of hydrometeors in clouds are intimately coupled. A new modelling approach was applied to quantify this linkage. We study the interaction in the cloud area under transient, high supersaturation conditions, using direct numerical simulations. Analysing the effect of aerosol dynamics on the turbulent kinetic energy and on vertical velocity, we conclude that the presence of aerosol has an effect on vertical motion and tends to reduce downward velocity.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
Victor Stepanenko, Ivan Mammarella, Anne Ojala, Heli Miettinen, Vasily Lykosov, and Timo Vesala
Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, https://doi.org/10.5194/gmd-9-1977-2016, 2016
Short summary
Short summary
A 1-D lake model is presented, reproducing temperature, oxygen, carbon dioxide and methane. All prognostic variables are treated in unified manner via generic 1-D transport equation. The model is validated vs. comprehensive observational data set gathered at Kuivajärvi Lake (Finland). Our results suggest that a gas transfer through thermocline under intense seiche motions is a bottleneck in quantifying greenhouse gas dynamics in dimictic lakes, calling for further research.
Riinu Ots, Dominique E. Young, Massimo Vieno, Lu Xu, Rachel E. Dunmore, James D. Allan, Hugh Coe, Leah R. Williams, Scott C. Herndon, Nga L. Ng, Jacqueline F. Hamilton, Robert Bergström, Chiara Di Marco, Eiko Nemitz, Ian A. Mackenzie, Jeroen J. P. Kuenen, David C. Green, Stefan Reis, and Mathew R. Heal
Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, https://doi.org/10.5194/acp-16-6453-2016, 2016
Short summary
Short summary
This study investigates the contribution of diesel vehicle emissions to organic aerosol formation and particulate matter concentrations in London. Comparisons of simulated pollutant concentrations with observations show good agreement and give confidence in the skill of the model applied. The contribution of diesel vehicle emissions, which are currently not included in official emissions inventories, is demonstrated to be substantial, indicating that more research on this topic is required.
Rebecca M. McKenzie, Mustafa Z. Özel, J. Neil Cape, Julia Drewer, Kerry J. Dinsmore, Eiko Nemitz, Y. Sim Tang, Netty van Dijk, Margaret Anderson, Jacqueline F. Hamilton, Mark A. Sutton, Martin W. Gallagher, and Ute Skiba
Biogeosciences, 13, 2353–2365, https://doi.org/10.5194/bg-13-2353-2016, https://doi.org/10.5194/bg-13-2353-2016, 2016
Short summary
Short summary
Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget and can potentially be biologically available as a source of N. Despite this it is not routinely measured. This study found that DON contributed up to 10 % of the total dissolved nitrogen (TDN) found in precipitation and was the most dominant fraction in soil water (99 %) and stream water (75 %).
Üllar Rannik, Luxi Zhou, Putian Zhou, Rosa Gierens, Ivan Mammarella, Andrey Sogachev, and Michael Boy
Atmos. Chem. Phys., 16, 3145–3160, https://doi.org/10.5194/acp-16-3145-2016, https://doi.org/10.5194/acp-16-3145-2016, 2016
Short summary
Short summary
Atmospheric boundary layer (ABL) model coupled with detailed atmospheric chemistry and aerosol dynamical model was used to quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols at a pine forest site in southern Finland. Simulations showed that under dynamical conditions the particle fluxes above canopy can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain particle sizes over a period of several days.
Saara E. Lind, Narasinha J. Shurpali, Olli Peltola, Ivan Mammarella, Niina Hyvönen, Marja Maljanen, Mari Räty, Perttu Virkajärvi, and Pertti J. Martikainen
Biogeosciences, 13, 1255–1268, https://doi.org/10.5194/bg-13-1255-2016, https://doi.org/10.5194/bg-13-1255-2016, 2016
Short summary
Short summary
We showed that the reed canary grass (RCG) was environmentally friendly from the CO2 balance point of view when cultivated on this mineral soil. When compared to the earlier findings on the same crop on organic soil site, the capacity of the crop to withdraw atmospheric CO2 was even stronger on the present mineral soil site than that on the organic soil site. For full estimation of the climatic impacts of this bioenergy system, a life cycle assessment will be needed.
A. Collalti, S. Marconi, A. Ibrom, C. Trotta, A. Anav, E. D'Andrea, G. Matteucci, L. Montagnani, B. Gielen, I. Mammarella, T. Grünwald, A. Knohl, F. Berninger, Y. Zhao, R. Valentini, and M. Santini
Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, https://doi.org/10.5194/gmd-9-479-2016, 2016
Short summary
Short summary
This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. The model consistently reproduces both in timing and in magnitude daily and monthly GPP variability across all sites, with the exception of the two Mediterranean sites. Inclusion of forest structure within simulation ameliorate in some cases the model output.
Y. Gao, T. Markkanen, T. Thum, M. Aurela, A. Lohila, I. Mammarella, M. Kämäräinen, S. Hagemann, and T. Aalto
Hydrol. Earth Syst. Sci., 20, 175–191, https://doi.org/10.5194/hess-20-175-2016, https://doi.org/10.5194/hess-20-175-2016, 2016
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
A. Olchev, A. Ibrom, O. Panferov, D. Gushchina, H. Kreilein, V. Popov, P. Propastin, T. June, A. Rauf, G. Gravenhorst, and A. Knohl
Biogeosciences, 12, 6655–6667, https://doi.org/10.5194/bg-12-6655-2015, https://doi.org/10.5194/bg-12-6655-2015, 2015
Short summary
Short summary
The time series analysis of the main meteorological parameters and components of CO2 and H2O fluxes showed a high evapotranspiration (ET) and gross primary production (GPP) sensitivity of the tropical rainforest to meteorological variations caused by El Niño-Southern Oscillation (ENSO) events. Incoming solar radiation is the main governing factor that is responsible for ET and GPP variability. Changes in precipitation due to moderate ENSO events did not have any notable effect on ET and GPP.
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
B. Langford, W. Acton, C. Ammann, A. Valach, and E. Nemitz
Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, https://doi.org/10.5194/amt-8-4197-2015, 2015
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
J. G. Levine, A. R. MacKenzie, O. J. Squire, A. T. Archibald, P. T. Griffiths, N. L. Abraham, J. A. Pyle, D. E. Oram, G. Forster, J. F. Brito, J. D. Lee, J. R. Hopkins, A. C. Lewis, S. J. B. Bauguitte, C. F. Demarco, P. Artaxo, P. Messina, J. Lathière, D. A. Hauglustaine, E. House, C. N. Hewitt, and E. Nemitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-24251-2015, https://doi.org/10.5194/acpd-15-24251-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
This study explores our ability to simulate atmospheric chemistry stemming from isoprene emissions—a reactive gas emitted from vegetation—in pristine and polluted regions of the Amazon basin. We explore how two contrasting models fare in reproducing recent airborne measurements in the region. Their differing treatments of transport and mixing are found to: profoundly affect their performance; and yield very different pictures of the exposure of the rainforest to harmful ozone concentrations.
S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni
Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, https://doi.org/10.5194/acp-15-8217-2015, 2015
Short summary
Short summary
Particulate matter (PM) constitutes one of the most challenging problems both for air quality and climate change policies. This paper reviews the most recent scientific results on the issue and the policy needs that have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-PM interactions and the effects of PM on human health and the environment.
M. M. Twigg, C. F. Di Marco, S. Leeson, N. van Dijk, M. R. Jones, I. D. Leith, E. Morrison, M. Coyle, R. Proost, A. N. M. Peeters, E. Lemon, T. Frelink, C. F. Braban, E. Nemitz, and J. N. Cape
Atmos. Chem. Phys., 15, 8131–8145, https://doi.org/10.5194/acp-15-8131-2015, https://doi.org/10.5194/acp-15-8131-2015, 2015
Short summary
Short summary
Hourly inorganic composition of UK background particulate matter (PM10 and PM2.5) has been studied for a 6.5-year period at Auchencorth Moss, Scotland. Long-range transport of both anthropogenic secondary and natural primary PM is observed, driven primarily by meteorology. The importance of nitrate, sulfate and ammonium during pollution events in the UK is demonstrated.
A. C. Valach, B. Langford, E. Nemitz, A. R. MacKenzie, and C. N. Hewitt
Atmos. Chem. Phys., 15, 7777–7796, https://doi.org/10.5194/acp-15-7777-2015, https://doi.org/10.5194/acp-15-7777-2015, 2015
Short summary
Short summary
Concentrations and fluxes of selected volatile organic compounds were measured over a 5-month period in central London as part of the ClearfLo project using a proton transfer reaction mass spectrometer. Emission sources within the city were inferred from spatio-temporal patterns and showed a detectable biogenic source during warmer months, which was modelled using the Guenther 95 algorithm. Comparisons were made with the local emissions inventories showing mostly underestimated emissions.
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
F. Minunno, M. Peltoniemi, S. Launiainen, M. Aurela, A. Lindroth, A. Lohila, I. Mammarella, K. Minkkinen, and A. Mäkelä
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-5089-2015, https://doi.org/10.5194/gmdd-8-5089-2015, 2015
Revised manuscript not accepted
C. Helfter, C. Campbell, K. J. Dinsmore, J. Drewer, M. Coyle, M. Anderson, U. Skiba, E. Nemitz, M. F. Billett, and M. A. Sutton
Biogeosciences, 12, 1799–1811, https://doi.org/10.5194/bg-12-1799-2015, https://doi.org/10.5194/bg-12-1799-2015, 2015
Short summary
Short summary
The CO2 sink strength of a temperate peatland in SE Scotland exhibited large inter-annual variability which was well-correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating a phenological memory effect. Autotrophic respiration is thought to be dominant, but heterotrophic processes might have been enhanced during dry spells increasing the loss of CO2 to the atmosphere.
Ü. Rannik, S. Haapanala, N. J. Shurpali, I. Mammarella, S. Lind, N. Hyvönen, O. Peltola, M. Zahniser, P. J. Martikainen, and T. Vesala
Biogeosciences, 12, 415–432, https://doi.org/10.5194/bg-12-415-2015, https://doi.org/10.5194/bg-12-415-2015, 2015
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
O. Peltola, A. Hensen, C. Helfter, L. Belelli Marchesini, F. C. Bosveld, W. C. M. van den Bulk, J. A. Elbers, S. Haapanala, J. Holst, T. Laurila, A. Lindroth, E. Nemitz, T. Röckmann, A. T. Vermeulen, and I. Mammarella
Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, https://doi.org/10.5194/bg-11-3163-2014, 2014
J. Schmale, J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, and C. F. Braban
Atmos. Chem. Phys., 13, 8669–8694, https://doi.org/10.5194/acp-13-8669-2013, https://doi.org/10.5194/acp-13-8669-2013, 2013
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
O. Peltola, I. Mammarella, S. Haapanala, G. Burba, and T. Vesala
Biogeosciences, 10, 3749–3765, https://doi.org/10.5194/bg-10-3749-2013, https://doi.org/10.5194/bg-10-3749-2013, 2013
L. Wang, A. Ibrom, J. F. J. Korhonen, K. F. Arnoud Frumau, J. Wu, M. Pihlatie, and J. K. Schjoerring
Biogeosciences, 10, 999–1011, https://doi.org/10.5194/bg-10-999-2013, https://doi.org/10.5194/bg-10-999-2013, 2013
J. T. Walker, M. R. Jones, J. O. Bash, L. Myles, T. Meyers, D. Schwede, J. Herrick, E. Nemitz, and W. Robarge
Biogeosciences, 10, 981–998, https://doi.org/10.5194/bg-10-981-2013, https://doi.org/10.5194/bg-10-981-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
Ü. Rannik, N. Altimir, I. Mammarella, J. Bäck, J. Rinne, T. M. Ruuskanen, P. Hari, T. Vesala, and M. Kulmala
Atmos. Chem. Phys., 12, 12165–12182, https://doi.org/10.5194/acp-12-12165-2012, https://doi.org/10.5194/acp-12-12165-2012, 2012
G. Lasslop, M. Migliavacca, G. Bohrer, M. Reichstein, M. Bahn, A. Ibrom, C. Jacobs, P. Kolari, D. Papale, T. Vesala, G. Wohlfahrt, and A. Cescatti
Biogeosciences, 9, 5243–5259, https://doi.org/10.5194/bg-9-5243-2012, https://doi.org/10.5194/bg-9-5243-2012, 2012
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Intercomparison of fast airborne ozone instruments to measure eddy covariance fluxes: spatial variability in deposition at the ocean surface and evidence for cloud processing
Field assessments on the impact of CO2 concentration fluctuations along with complex-terrain flows on the estimation of the net ecosystem exchange of temperate forests
Multi-instrumental analysis of ozone vertical profiles and total columns in South America: comparison between subtropical and equatorial latitudes
Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors
Direct high-precision radon quantification for interpreting high frequency greenhouse gas measurements
Detection and long-term quantification of methane emissions from an active landfill
Research of low-cost air quality monitoring models with different machine learning algorithms
New insights from the Jülich Ozone Sonde Intercomparison Experiment: calibration functions traceable to one ozone reference instrument
Identification of spikes in continuous ground-based in situ time series of CO2, CH4 and CO: an extended experiment within the European ICOS Atmosphere network
Data treatment and corrections for estimating H2O and CO2 isotope fluxes from high-frequency observations
Measurements of volatile organic compounds in ambient air by gas-chromatography and real-time Vocus PTR-TOF-MS: calibrations, instrument background corrections, and introducing a PTR Data Toolkit
Development of low-cost air quality stations for next-generation monitoring networks: calibration and validation of NO2 and O3 sensors
Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise
Characterising the methane gas and environmental response of the Figaro Taguchi Gas Sensor (TGS) 2611-E00
Reducing errors on estimates of the carbon uptake period based on time series of atmospheric CO2
Generalized Kendrick analysis for improved visualization of atmospheric mass spectral data
Determination of NOx emission rates of inland ships from onshore measurements
Data quality enhancement for field experiments in atmospheric chemistry via sequential Monte Carlo filters
A flexible algorithm for network design based on information theory
Real-world wintertime CO, N2O, and CO2 emissions of a central European village
Evaluation of two common source estimation measurement strategies using large-eddy simulation of plume dispersion under neutral atmospheric conditions
Machine learning techniques to improve the field performance of low-cost air quality sensors
Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer
Importance of the Webb, Pearman, and Leuning (WPL) correction for the measurement of small CO2 fluxes
Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors
An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations
Mobile atmospheric measurements and local-scale inverse estimation of the location and rates of brief CH4 and CO2 releases from point sources
SIBaR: a new method for background quantification and removal from mobile air pollution measurements
Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability
The high-frequency response correction of eddy covariance fluxes – Part 1: An experimental approach and its interdependence with the time-lag estimation
Uncertainty of hourly-average concentration values derived from non-continuous measurements
Emissions relationships in western forest fire plumes – Part 1: Reducing the effect of mixing errors on emission factors
A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency
Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water
High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application to Amsterdam
Towards standardized processing of eddy covariance flux measurements of carbonyl sulfide
Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland
Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers
Correcting high-frequency losses of reactive nitrogen flux measurements
Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach
InnFLUX – an open-source code for conventional and disjunct eddy covariance analysis of trace gas measurements: an urban test case
Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik
Traffic-related air pollution near roadways: discerning local impacts from background
Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment
Evaluating and improving the reliability of gas-phase sensor system calibrations across new locations for ambient measurements and personal exposure monitoring
A novel approach for simple statistical analysis of high-resolution mass spectra
Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
Flexible approach for quantifying average long-term changes and seasonal cycles of tropospheric trace species
The ICAD (iterative cavity-enhanced DOAS) method
Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment
Randall Chiu, Florian Obersteiner, Alessandro Franchin, Teresa Campos, Adriana Bailey, Christopher Webster, Andreas Zahn, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5731–5746, https://doi.org/10.5194/amt-17-5731-2024, https://doi.org/10.5194/amt-17-5731-2024, 2024
Short summary
Short summary
The ozone sink into oceans and marine clouds is seldom studied and highly uncertain. Calculations suggest O3 destruction at aqueous surfaces (ocean, droplets) may be strongly accelerated, but field evidence is missing. Here we compare three fast airborne O3 instruments to measure eddy covariance fluxes of O3 over the remote ocean, in clear and cloudy air. We find O3 fluxes below clouds are consistently directed into clouds, while O3 fluxes into oceans are much smaller and spatially variable.
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech., 17, 5581–5599, https://doi.org/10.5194/amt-17-5581-2024, https://doi.org/10.5194/amt-17-5581-2024, 2024
Short summary
Short summary
Dense canopy weakens turbulent mixing, leading to significant CO2 storage (Fs), a key part of net ecosystem exchange (NEE) measured using eddy covariance. Gust-biased Fs measurements complicate NEE estimation in forests with complex terrain. We analyzed gust-induced CO2 fluctuations and their impact on Fs. Fs and its contribution to NEE can be explained by terrain complexity and turbulent mixing. This work highlights how gusts over complex terrain affect the Fs and NEE measurements.
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024, https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi
Atmos. Meas. Tech., 17, 3917–3931, https://doi.org/10.5194/amt-17-3917-2024, https://doi.org/10.5194/amt-17-3917-2024, 2024
Short summary
Short summary
This study examined the transferability of machine learning calibration models among low-cost sensor units targeting NO2 and NO. The global models were evaluated under similar and different emission conditions. To counter cross-sensitivity, the study proposed integrating O3 measurements from nearby reference stations, in Switzerland. The models show substantial improvement when O3 measurements are incorporated, which is more pronounced when in regions with elevated O3 concentrations.
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Foster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, and Tim Arnold
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-54, https://doi.org/10.5194/amt-2024-54, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We present a protocol to enhance confidence in reported atmospheric radon measurements, enabling direct comparisons between sites and integration with GHG measurements. Radon, a natural atmospheric tracer, provides an independent evaluation of transport model performance. The standardized approach ensures radon's use as a metric for model evaluation. Applicable beyond UK observatories, this protocol can benefit larger networks like ICOS or GAW, advancing atmospheric studies worldwide.
Pramod Kumar, Christopher Caldow, Grégoire Broquet, Adil Shah, Olivier Laurent, Camille Yver-Kwok, Sebastien Ars, Sara Defratyka, Susan Warao Gichuki, Luc Lienhardt, Mathis Lozano, Jean-Daniel Paris, Felix Vogel, Caroline Bouchet, Elisa Allegrini, Robert Kelly, Catherine Juery, and Philippe Ciais
Atmos. Meas. Tech., 17, 1229–1250, https://doi.org/10.5194/amt-17-1229-2024, https://doi.org/10.5194/amt-17-1229-2024, 2024
Short summary
Short summary
This study presents a series of mobile measurement campaigns to monitor the CH4 emissions from an active landfill. These measurements are processed using a Gaussian plume model and atmospheric inversion techniques to quantify the landfill CH4 emissions. The methane emission estimates range between ~0.4 and ~7 t CH4 per day, and their variations are analyzed. The robustness of the estimates is assessed depending on the distance of the measurements from the potential sources in the landfill.
Gang Wang, Chunlai Yu, Kai Guo, Haisong Guo, and Yibo Wang
Atmos. Meas. Tech., 17, 181–196, https://doi.org/10.5194/amt-17-181-2024, https://doi.org/10.5194/amt-17-181-2024, 2024
Short summary
Short summary
A low-cost multi-parameter air quality monitoring system (LCS) based on different machine learning algorithms is proposed. The LCS can measure particulate matter (PM) and gas pollutants simultaneously. The performance of the different algorithms (RF, MLR, KNN, BP, GA-BP) with the parameters such as R2 and RMSE are compared and discussed. These measurements indicate the LCS based on the machine learning algorithms can be used to predict the concentrations of PM and gas pollution.
Herman G. J. Smit, Deniz Poyraz, Roeland Van Malderen, Anne M. Thompson, David W. Tarasick, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 73–112, https://doi.org/10.5194/amt-17-73-2024, https://doi.org/10.5194/amt-17-73-2024, 2024
Short summary
Short summary
This paper revisits fundamentals of ECC ozonesonde measurements to develop and characterize a methodology to correct for the fast and slow time responses using the JOSIE (Jülich Ozone Sonde Intercomparison Experiment) simulation chamber data. Comparing the new corrected ozonesonde profiles to an accurate ozone UV photometer (OPM) as reference allows us to evaluate the time response correction (TRC) method and to determine calibration functions traceable to one reference with 5 % uncertainty.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5787–5810, https://doi.org/10.5194/amt-16-5787-2023, https://doi.org/10.5194/amt-16-5787-2023, 2023
Short summary
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
Andrew R. Jensen, Abigail R. Koss, Ryder B. Hales, and Joost A. de Gouw
Atmos. Meas. Tech., 16, 5261–5285, https://doi.org/10.5194/amt-16-5261-2023, https://doi.org/10.5194/amt-16-5261-2023, 2023
Short summary
Short summary
Quantification of a wide range of volatile organic compounds by proton-transfer-reaction mass spectrometry (PTR-MS) can be achieved with direct calibration of only a subset of compounds, characterization of instrument response, and simple reaction kinetics. We characterized our Vocus PTR-MS and developed a toolkit as a guide through this process. A catalytic zero air generator provided the lowest detection limits, and short, frequent calibrations informed variability in instrument response.
Alice Cavaliere, Lorenzo Brilli, Bianca Patrizia Andreini, Federico Carotenuto, Beniamino Gioli, Tommaso Giordano, Marco Stefanelli, Carolina Vagnoli, Alessandro Zaldei, and Giovanni Gualtieri
Atmos. Meas. Tech., 16, 4723–4740, https://doi.org/10.5194/amt-16-4723-2023, https://doi.org/10.5194/amt-16-4723-2023, 2023
Short summary
Short summary
We assessed calibration models for two low-cost stations equipped with O3 and NO2 metal oxide sensors. Environmental parameters had improved accuracy in linear and black box models. Moreover, interpretability methods like SHapley Additive exPlanations helped identify the physical patterns and potential problems of these models in a field validation. Results showed both sensors performed well with the same linear model form, but unique coefficients were required for intersensor variability.
Blake Actkinson and Robert J. Griffin
Atmos. Meas. Tech., 16, 3547–3559, https://doi.org/10.5194/amt-16-3547-2023, https://doi.org/10.5194/amt-16-3547-2023, 2023
Short summary
Short summary
Data collected using air quality instrumentation deployed on automobiles and driven repeatedly in Houston neighborhoods are analyzed using a novel machine learning technique. The aim is to separate large plumes from the rest of the data in order to identify the sources of the highest levels of the pollutants. The number and nature of these plumes are characterized spatially and can be linked to emissions from different types of motor vehicles.
Adil Shah, Olivier Laurent, Luc Lienhardt, Grégoire Broquet, Rodrigo Rivera Martinez, Elisa Allegrini, and Philippe Ciais
Atmos. Meas. Tech., 16, 3391–3419, https://doi.org/10.5194/amt-16-3391-2023, https://doi.org/10.5194/amt-16-3391-2023, 2023
Short summary
Short summary
As methane (CH4) contributes to global warming, more CH4 measurements are required to better characterise source emissions. Hence, we tested a cheap CH4 sensor for 338 d of landfill sampling. We derived an excellent CH4 response model in a stable environment. However, different types of air with the same CH4 level had diverse sensor responses. We characterised temperature and water vapour response but could not replicate field sampling. Thus, other species may cause sensor interactions.
Theertha Kariyathan, Ana Bastos, Julia Marshall, Wouter Peters, Pieter Tans, and Markus Reichstein
Atmos. Meas. Tech., 16, 3299–3312, https://doi.org/10.5194/amt-16-3299-2023, https://doi.org/10.5194/amt-16-3299-2023, 2023
Short summary
Short summary
The timing and duration of the carbon uptake period (CUP) are sensitive to the occurrence of major phenological events, which are influenced by recent climate change. This study presents an ensemble-based approach for quantifying the timing and duration of the CUP and their uncertainty when derived from atmospheric CO2 measurements with noise and gaps. The CUP metrics derived with the approach are more robust and have less uncertainty than when estimated with the conventional methods.
Mitchell W. Alton, Harald J. Stark, Manjula R. Canagaratna, and Eleanor C. Browne
Atmos. Meas. Tech., 16, 3273–3282, https://doi.org/10.5194/amt-16-3273-2023, https://doi.org/10.5194/amt-16-3273-2023, 2023
Short summary
Short summary
Mass spectrometric measurements of atmospheric composition routinely detect hundreds of different ions of varying chemical composition, creating challenges for visualization and data interpretation. We present a new analysis technique to facilitate visualization, while providing greater chemical insight. Additionally, it can aid in identifying the chemical composition of ions. A graphical user interface for performing the analysis is introduced and freely available, enabling broad applications.
Kai Krause, Folkard Wittrock, Andreas Richter, Dieter Busch, Anton Bergen, John P. Burrows, Steffen Freitag, and Olesia Halbherr
Atmos. Meas. Tech., 16, 1767–1787, https://doi.org/10.5194/amt-16-1767-2023, https://doi.org/10.5194/amt-16-1767-2023, 2023
Short summary
Short summary
Inland shipping is an important source of nitrogen oxides (NOx). The amount of emitted NOx depends on the characteristics of the individual vessels and the traffic density. Ship emissions are often characterised by the amount of emitted NOx per unit of burnt fuel, and further knowledge about fuel consumption is needed to quantify the total emissions caused by ship traffic. In this study, a new approach to derive absolute emission rates (in g s−1) from onshore measurements is presented.
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 1167–1178, https://doi.org/10.5194/amt-16-1167-2023, https://doi.org/10.5194/amt-16-1167-2023, 2023
Short summary
Short summary
Field experiments in atmospheric chemistry provide insights into chemical interactions of our atmosphere. However, high data coverage and accuracy are needed to enable further analysis. In this study, we explore a statistical method that combines knowledge about the chemical reactions with information from measurements to increase the quality of field experiment datasets. We test the algorithm for several applications and discuss limitations that depend on the specific variable and the dynamics.
Rona L. Thompson and Ignacio Pisso
Atmos. Meas. Tech., 16, 235–246, https://doi.org/10.5194/amt-16-235-2023, https://doi.org/10.5194/amt-16-235-2023, 2023
Short summary
Short summary
Atmospheric networks are used for monitoring air quality and greenhouse gases and can provide essential information about the sources and sinks. The design of the network, specifically where to place the observations, is a critical question in order to maximize the information provided while minimizing the cost. Here, a novel method of designing atmospheric networks is presented with two examples, one on monitoring sources of methane and the second on monitoring fossil fuel emissions of CO2.
László Haszpra, Zoltán Barcza, Zita Ferenczi, Roland Hollós, Anikó Kern, and Natascha Kljun
Atmos. Meas. Tech., 15, 5019–5031, https://doi.org/10.5194/amt-15-5019-2022, https://doi.org/10.5194/amt-15-5019-2022, 2022
Short summary
Short summary
A novel approach is used for the determination of greenhouse gas (GHG) emissions of small rural settlements, which may significantly differ from those of urban regions and have hardly been studied yet. Among other results, it turned out that wintertime nitrous oxide emission is significantly underestimated in the official emission inventories. Given the large number of such settlements, the underestimation may also distort the national total emission values reported to international databases.
Anja Ražnjević, Chiel van Heerwaarden, and Maarten Krol
Atmos. Meas. Tech., 15, 3611–3628, https://doi.org/10.5194/amt-15-3611-2022, https://doi.org/10.5194/amt-15-3611-2022, 2022
Short summary
Short summary
We evaluate two widely used observational techniques (Other Test Method (OTM) 33A and car drive-bys) that estimate point source gas emissions. We performed our analysis on high-resolution plume dispersion simulation. For car drive-bys we found that at least 15 repeated measurements were needed to get within 40 % of the true emissions. OTM 33A produced large errors in estimation (50 %–200 %) due to its sensitivity to dispersion coefficients and underlying simplifying assumptions.
Tony Bush, Nick Papaioannou, Felix Leach, Francis D. Pope, Ajit Singh, G. Neil Thomas, Brian Stacey, and Suzanne Bartington
Atmos. Meas. Tech., 15, 3261–3278, https://doi.org/10.5194/amt-15-3261-2022, https://doi.org/10.5194/amt-15-3261-2022, 2022
Short summary
Short summary
Poor air quality is a human health risk which demands high-spatiotemporal-resolution monitoring data to manage. Low-cost air quality sensors present a convenient pathway to delivering these needs, compared to traditional methods, but bring methodological challenges which can limit operational ability. In this study within Oxford, UK, we develop machine learning methods to improve the quality of low-cost sensors for NO2, PM10 (particulate matter) and PM2.5 and demonstrate their effectiveness.
Lisa J. Beck, Siegfried Schobesberger, Mikko Sipilä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Meas. Tech., 15, 1957–1965, https://doi.org/10.5194/amt-15-1957-2022, https://doi.org/10.5194/amt-15-1957-2022, 2022
Short summary
Short summary
Sulfuric acid is known to be a main compound in atmospheric new particle formation. Yet, its concentration is very low, which leads to challenges in detecting it. In our study, we derive the sulfuric acid concentration from measurements of ambient ions with a mass spectrometer. Our validation shows that the theoretical approach using the bisulfate ion and its clusters with H2SO4 captures the sulfuric acid concentration very well during daytime.
Katharina Jentzsch, Julia Boike, and Thomas Foken
Atmos. Meas. Tech., 14, 7291–7296, https://doi.org/10.5194/amt-14-7291-2021, https://doi.org/10.5194/amt-14-7291-2021, 2021
Short summary
Short summary
Very small CO2 fluxes are measured at night in Arctic regions. If the sensible heat flux is not close to zero under these conditions, the WPL correction will take values on the order of the flux. A special quality control is proposed for these cases.
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021, https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
Short summary
The last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments. This study introduces a seven-step methodology for the field calibration of low-cost sensors with user-friendly guidelines, open-access code, and a discussion of common barriers. Our goal with this work is to push for standardized reporting of methods, make critical data processing steps clear for users, and encourage responsible use in the scientific community and beyond.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Pramod Kumar, Grégoire Broquet, Camille Yver-Kwok, Olivier Laurent, Susan Gichuki, Christopher Caldow, Ford Cropley, Thomas Lauvaux, Michel Ramonet, Guillaume Berthe, Frédéric Martin, Olivier Duclaux, Catherine Juery, Caroline Bouchet, and Philippe Ciais
Atmos. Meas. Tech., 14, 5987–6003, https://doi.org/10.5194/amt-14-5987-2021, https://doi.org/10.5194/amt-14-5987-2021, 2021
Short summary
Short summary
This study presents a simple atmospheric inversion modeling framework for the localization and quantification of unknown CH4 and CO2 emissions from point sources based on near-surface mobile concentration measurements and a Gaussian plume dispersion model. It is applied for the estimate of a series of brief controlled releases of CH4 and CO2 with a wide range of rates during the TOTAL TADI-2018 experiment. Results indicate a ~10 %–40 % average error on the estimate of the release rates.
Blake Actkinson, Katherine Ensor, and Robert J. Griffin
Atmos. Meas. Tech., 14, 5809–5821, https://doi.org/10.5194/amt-14-5809-2021, https://doi.org/10.5194/amt-14-5809-2021, 2021
Short summary
Short summary
This paper describes the development of a new method used to estimate background from mobile monitoring time series. The method is tested on a previously published dataset, applied to an extensive mobile dataset, and compared with other previously published techniques used to estimate background. The results suggest that the method is a promising framework for background estimation.
Peer Nowack, Lev Konstantinovskiy, Hannah Gardiner, and John Cant
Atmos. Meas. Tech., 14, 5637–5655, https://doi.org/10.5194/amt-14-5637-2021, https://doi.org/10.5194/amt-14-5637-2021, 2021
Short summary
Short summary
Machine learning (ML) calibration techniques could be an effective way to improve the performance of low-cost air pollution sensors. Here we provide novel insights from case studies within the urban area of London, UK, where we compared the performance of three ML techniques to calibrate low-cost measurements of NO2 and PM10. In particular, we highlight the key issue of the method-dependent robustness in maintaining calibration skill after transferring sensors to different measurement sites.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
László Haszpra and Ernő Prácser
Atmos. Meas. Tech., 14, 3561–3571, https://doi.org/10.5194/amt-14-3561-2021, https://doi.org/10.5194/amt-14-3561-2021, 2021
Short summary
Short summary
Most of the tall-tower greenhouse gas observatories apply a single gas analyzer for the sequential sampling of several intakes along the tower. The non-continuous sampling at each intake introduces excess uncertainty to the calculated hourly-average concentrations used in several applications. Based on real-world measurements, the paper systematically assesses this type of uncertainty.
Robert B. Chatfield, Meinrat O. Andreae, ARCTAS Science Team, and SEAC4RS Science Team
Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020, https://doi.org/10.5194/amt-13-7069-2020, 2020
Short summary
Short summary
Forest burning affects air pollution and global climate. A NASA aircraft studied fire emissions including the Rim Fire near Yosemite. We found frequent confusions between the actual fire emission factors and other effects on the air samples. Effects on CO2 and CO can originate far upwind; the gases can mix variably into a smoke plume. We devised a theory of constant features in plumes. A statistical mixed-effects analysis of a co-emitted tracers model disentangles such mixing from fire effects.
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020, https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Short summary
The time response of electrochemical concentration cell (ECC) ozonesondes points to at least two distinct reaction pathways with time constants of approximately 20 s and 25 min. Properly considering these time constants eliminates the need for a poorly defined "background" and allows reducing ad hoc corrections based on laboratory tests. This reduces the uncertainty of ECC ozonesonde measurements throughout the profile and especially in regions of low ozone and strong gradients of ozone.
Fan Zhou, Liwei Hou, Rui Zhong, Wei Chen, Xunpeng Ni, Shengda Pan, Ming Zhao, and Bowen An
Atmos. Meas. Tech., 13, 4899–4909, https://doi.org/10.5194/amt-13-4899-2020, https://doi.org/10.5194/amt-13-4899-2020, 2020
Short summary
Short summary
On 15 July 2019, using an unmanned aerial vehicle (UAV), maritime authorities ferreted out a sailing ship whose fuel sulfur content (FSC) failed to meet Chinese regulations. This was the first time that a sailing ship had been caught for having failed the FSC regulations in China. The UAV system, method, and monitoring result utilized are discussed in this paper. We recommend that emissions from sailing ships be monitored more often in the open water in the future.
Bas Mijling
Atmos. Meas. Tech., 13, 4601–4617, https://doi.org/10.5194/amt-13-4601-2020, https://doi.org/10.5194/amt-13-4601-2020, 2020
Short summary
Short summary
Many cities are experimenting with networks of low-cost sensors, complementary to their reference stations. Often the observations are published as dots on a map, as spatial interpolation is far from trivial. A new methodology to assimilate observations of different accuracy in a generic urban-air-quality model is introduced. It can be used for mapping local air quality based on reference measurements only or as a framework to integrate low-cost measurements next to official measurements.
Kukka-Maaria Kohonen, Pasi Kolari, Linda M. J. Kooijmans, Huilin Chen, Ulli Seibt, Wu Sun, and Ivan Mammarella
Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020, https://doi.org/10.5194/amt-13-3957-2020, 2020
Short summary
Short summary
Biosphere–atmosphere gas exchange (flux) measurements of carbonyl sulfide (COS) are becoming popular for estimating biospheric photosynthesis. To compare COS flux measurements across different measurement sites, we need standardized protocols for data processing. We analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we aim to settle on a set of recommended protocols for COS flux calculation.
Michael Müller, Peter Graf, Jonas Meyer, Anastasia Pentina, Dominik Brunner, Fernando Perez-Cruz, Christoph Hüglin, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 3815–3834, https://doi.org/10.5194/amt-13-3815-2020, https://doi.org/10.5194/amt-13-3815-2020, 2020
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Pascal Wintjen, Christof Ammann, Frederik Schrader, and Christian Brümmer
Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, https://doi.org/10.5194/amt-13-2923-2020, 2020
Short summary
Short summary
With recent technological advances it is now possible to measure the exchange of trace gases between the land surface and the atmosphere. When using the so-called eddy-covariance method, certain corrections need to be applied to account for attenuation in the flux signal. These losses were found to be setup- and site-specific and can be up to 38 % for reactive nitrogen fluxes. We evaluated five different methods and recommend using an empirical version with locally measured cospectra.
Martin Kunz, Jost V. Lavric, Rainer Gasche, Christoph Gerbig, Richard H. Grant, Frank-Thomas Koch, Marcus Schumacher, Benjamin Wolf, and Matthias Zeeman
Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020, https://doi.org/10.5194/amt-13-1671-2020, 2020
Short summary
Short summary
The nocturnal boundary layer (NBL) budget method enables the quantification of gas fluxes between ecosystems and the atmosphere under nocturnal stable stratification, a condition under which standard approaches struggle. However, up to now the application of the NBL method has been limited by difficulties in obtaining the required measurements. We show how an unmanned aircraft system (UAS) equipped with a carbon dioxide analyser can make this method more accessible.
Marcus Striednig, Martin Graus, Tilmann D. Märk, and Thomas G. Karl
Atmos. Meas. Tech., 13, 1447–1465, https://doi.org/10.5194/amt-13-1447-2020, https://doi.org/10.5194/amt-13-1447-2020, 2020
Short summary
Short summary
The current work summarizes a long-term effort to provide an open-source code for the analysis of turbulent fluctuations of trace gases in the atmosphere by eddy covariance and disjunct eddy covariance, with a special focus on reactive gases that participate in atmospheric chemistry. The performance of the code is successfully evaluated based on measurements of minute fluxes of non-methane volatile organic compounds into the urban atmosphere.
Friedemann Reum, Mathias Göckede, Jost V. Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt, and Martin Heimann
Atmos. Meas. Tech., 12, 5717–5740, https://doi.org/10.5194/amt-12-5717-2019, https://doi.org/10.5194/amt-12-5717-2019, 2019
Short summary
Short summary
We present continuous in situ measurements of atmospheric CO2 and CH4 mole fractions at the new station Ambarchik, located in northeastern Siberia. We describe the site, measurements and quality control, characterize the signals in comparison with data from Barrow, Alaska, and show which regions the measurements are sensitive to. Ambarchik data are available upon request.
Nathan Hilker, Jonathan M. Wang, Cheol-Heon Jeong, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michael Noble, Anthony Munoz, Geoff Doerksen, Luc White, Céline Audette, Dennis Herod, Jeffrey R. Brook, and Greg J. Evans
Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, https://doi.org/10.5194/amt-12-5247-2019, 2019
Short summary
Short summary
Increased interest in monitoring air quality near roadways, combined with traffic's often unclear contribution to elevated concentrations, has created a need for better interpretation of these data. Using 2 years of measurements collected during a near-road monitoring project in Canada, this paper contrasts three methods for estimating the fraction of roadside pollution resulting from on-road traffic. Robustness of these methods was compared with tandem measurements at background locations.
Laura Cartwright, Andrew Zammit-Mangion, Sangeeta Bhatia, Ivan Schroder, Frances Phillips, Trevor Coates, Karita Negandhi, Travis Naylor, Martin Kennedy, Steve Zegelin, Nick Wokker, Nicholas M. Deutscher, and Andrew Feitz
Atmos. Meas. Tech., 12, 4659–4676, https://doi.org/10.5194/amt-12-4659-2019, https://doi.org/10.5194/amt-12-4659-2019, 2019
Short summary
Short summary
Despite extensive research, emission detection and quantification of greenhouse gases (GHGs) remain an open problem. This article presents a novel statistical framework for detecting and quantifying methane emissions and showcases its efficacy on data collected from different instruments in the 2015 Ginninderra controlled-release experiment. The developed techniques can be used to aid GHG emission reduction schemes by, for example, detecting and quantifying leaks from carbon storage facilities.
Sharad Vikram, Ashley Collier-Oxandale, Michael H. Ostertag, Massimiliano Menarini, Camron Chermak, Sanjoy Dasgupta, Tajana Rosing, Michael Hannigan, and William G. Griswold
Atmos. Meas. Tech., 12, 4211–4239, https://doi.org/10.5194/amt-12-4211-2019, https://doi.org/10.5194/amt-12-4211-2019, 2019
Short summary
Short summary
Low-cost air quality sensors are enabling people to collect data to better understand their local environment and potential exposures. However, there is some concern regarding how reliable the calibrations of these sensors are in new and different environments. To explore this issue, our team colocated sensors at three different sites with high-quality monitoring instruments to compare to. We explored the transferability of calibration models as well as approaches to improve reliability.
Yanjun Zhang, Otso Peräkylä, Chao Yan, Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Qiaozhi Zha, Matthieu Riva, Olga Garmash, Heikki Junninen, Pentti Paatero, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 12, 3761–3776, https://doi.org/10.5194/amt-12-3761-2019, https://doi.org/10.5194/amt-12-3761-2019, 2019
Short summary
Short summary
Recent advancements in atmospheric mass spectrometry provide large amounts of new information but at the same time present considerable challenges for the data analysis, for example, in high-resolution peak identification and separation. To address these problems, this study presents a simple and novel method, which succeeds in analyzing both synthetic and ambient datasets. We believe it will become a powerful approach in the data analysis of mass spectra.
Cheng-Hsien Lin, Richard H. Grant, Albert J. Heber, and Cliff T. Johnston
Atmos. Meas. Tech., 12, 3403–3415, https://doi.org/10.5194/amt-12-3403-2019, https://doi.org/10.5194/amt-12-3403-2019, 2019
Short summary
Short summary
The open-path FTIR (OP-FTIR) is often used to measure the atmospheric gas composition and concentrations. The OP-FTIR, however, is sensitive to the changed ambient factors, which likely led to quantitative biases. This study developed methods to minimize the effect of the ambient temperature and humidity on N2O/CO2 quantification. These methods can help the users who implement the OP-FTIR to estimate gas fluxes in the agroecosystem achieve more precise and accurate estimations.
David D. Parrish, Richard G. Derwent, Simon O'Doherty, and Peter G. Simmonds
Atmos. Meas. Tech., 12, 3383–3394, https://doi.org/10.5194/amt-12-3383-2019, https://doi.org/10.5194/amt-12-3383-2019, 2019
Short summary
Short summary
We present a flexible method that employs a power series expansion and Fourier series analysis to characterize the average long-term change and seasonal cycle, respectively, from a time series of observations of a trace atmospheric species. This approach maximizes the statistically significant information derived, including non-linear aspects of the long-term trends, without over fitting the data. Generally, a small set of parameter values (e.g., 7 or 8) provides this characterization.
Martin Horbanski, Denis Pöhler, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 12, 3365–3381, https://doi.org/10.5194/amt-12-3365-2019, https://doi.org/10.5194/amt-12-3365-2019, 2019
Short summary
Short summary
ICAD allows a precise in situ measurement of gases like NO2 in a relatively simple and compact setup. The main advantage in comparison to most other optical methods is that it does not require a stable total light intensity. This allows a simpler and mobile instrument setup and additionally it features no observed cross-interferences. We validated the high quality for an ICAD NO2 instrument in different inter-comparisons with a detection limit of 0.02 ppbv.
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019, https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
Short summary
A home-built instrument of an incoherent broadband cavity-enhanced absorption spectrometer is reported for sensitive detection of CHOCHO and NO2 in China's highly polluted environment. An NO2 spectral profile measured using the same spectrometer is applied as a reference spectral profile in the subsequent atmospheric spectral analysis and retrieval of NO2 and CHOCHO. This will provide an idea for solving the problem of cross-interference of strongly absorbing gases in weakly absorbing gases.
Cited articles
Aslan, T., Peltola, O., Ibrom, A., Nemitz, E., Rannik, Ü., and Mammarella, I.: The high frequency response correction of eddy covariance fluxes. Part 2: An experimental approach for analysing noisy measurements of small fluxes, Zenodo [data set], https://doi.org/10.5281/zenodo.4753827, 2021. a
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175, 1999. a, b
Biosciences, L.-C.: EddyPro software instruction manual, LI-COR Inc., Lincoln, Nebraska, USA, 2020. a
Eugster, W. and Senn, W.: A cospectral correction model for measurement of turbulent NO2 flux, Bound.-Lay. Meteorol., 74, 321–340, 1995. a
Foken, T.: Micrometeorology, vol. 2, Springer, Berlin, Germany, https://doi.org/10.1007/978-3-642-25440-6, 2008. a, b
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest Meteorol., 78, 83–105, 1996. a
Gerdel, K., Spielmann, F. M., Hammerle, A., and Wohlfahrt, G.: Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer, Atmos. Meas. Tech., 10, 3525–3537, https://doi.org/10.5194/amt-10-3525-2017, 2017. a
Goulden, M. L., Daube, B. C., Fan, S.-M., Sutton, D. J., Bazzaz, A., Munger, J. W., and Wofsy, S. C.: Physiological responses of a black spruce forest to weather, J. Geophys. Res.-Atmos., 102, 28987–28996, 1997. a
Horst, T.: On frequency response corrections for eddy covariance flux measurements, Bound.-Lay. Meteorol., 94, 517–520, 2000. a
Humphreys, E. R., Andrew Black, T., Morgenstern, K., Li, Z., and Nesic, Z.: Net ecosystem production of a Douglas-fir stand for 3 years following clearcut harvesting, Glob. Change Biol., 11, 450–464, 2005. a
Hunt, J. E., Laubach, J., Barthel, M., Fraser, A., and Phillips, R. L.: Carbon budgets for an irrigated intensively grazed dairy pasture and an unirrigated winter-grazed pasture, Biogeosciences, 13, 2927–2944, https://doi.org/10.5194/bg-13-2927-2016, 2016. a
Ibrom, A., Dellwik, E., Larsen, S. E., and Pilegaard, K.: On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements,
Tellus B, 59, 937–946, 2007b. a
Järvi, L., Nordbo, A., Rannik, Ü., Haapanala, S., Riikonen, A., Mammarella, I., Pihlatie, M., and Vesala, T.: Urban nitrous-oxide fluxes measured using the eddy-covariance technique in Helsinki, Finland, Boreal Environ. Res., 19, 108–121, 2014. a
Kaimal, J. C., Wyngaard, J., Izumi, Y., and Coté, O.: Spectral characteristics of surface-layer turbulence, Q. J. Roy. Meteor. Soc., 98, 563–589, 1972. a
Kohonen, K.-M., Kolari, P., Kooijmans, L. M. J., Chen, H., Seibt, U., Sun, W., and Mammarella, I.: Towards standardized processing of eddy covariance flux measurements of carbonyl sulfide, Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020, 2020. a
Langford, B., Acton, W., Ammann, C., Valach, A., and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, 2015. a, b
Launiainen, S., Rinne, J., Pumpanen, J., Kulmala, L., Kolari, P., Keronen, P., Siivola, E., Pohja, T., Hari, P., and Vesala, T.: Eddy covariance measurements of CO, Boreal Environ. Res., 10, 569–588, 2005. a
Lee, X., Massman, W., and Law, B.: Handbook of micrometeorology: a guide for surface flux measurement and analysis, vol. 29, Springer Science & Business Media, Dordrecht, The Netherlands, ISBN 1-4020-2264-6, 2004. a
Mammarella, I., Nordbo, A., Rannik, Ü., Haapanala, S., Levula, J., Laakso, H., Ojala, A., Peltola, O., Heiskanen, J., Pumpanen, J., and Vesala, T.: Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland, J. Geophys. Res.-Biogeo., 120, 1296–1314, 2015. a
Mammarella, I., Peltola, O., Nordbo, A., Järvi, L., and Rannik, Ü.: Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems, Atmos. Meas. Tech., 9, 4915–4933, https://doi.org/10.5194/amt-9-4915-2016, 2016. a
Massman, W. J.: A simple method for estimating frequency response corrections for eddy covariance systems, Agr. Forest Meteorol., 104, 185–198, 2000. a
Nemitz, E., Mammarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel, S., Gielen, B., Grelle, A., Heinesch, B., Herbst, M., Hörtnagl, L., Klemedtsson, L., Lindroth, A., Lohila, A., McDermitt, D. K., Meier, P., Merbold, L., Nelson, D., Nicolini, G., Nilsson, M. B., Peltola, O., Rinne, J., and Zahniser, M.: Standardisation of eddy-covariance flux measurements of methane and nitrous oxide, Int. Agrophys., 32, 517–549, 2018. a, b
Nordbo, A., Launiainen, S., Mammarella, I., Leppäranta, M., Huotari, J., Ojala, A., and Vesala, T.: Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique, J. Geophys. Res., 116, D02119, https://doi.org/10.1029/2010JD014542, 2011.
a
Oosterwijk, A., Henzing, B., and Järvi, L.: On the application of spectral corrections to particle flux measurements, Environ. Sci.: Nano, 5, 2315–2324, 2018. a
Peltola, O., Mammarella, I., Haapanala, S., Burba, G., and Vesala, T.: Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements, Biogeosciences, 10, 3749–3765, https://doi.org/10.5194/bg-10-3749-2013, 2013. a, b
Peltola, O., Hensen, A., Helfter, C., Belelli Marchesini, L., Bosveld, F. C., van den Bulk, W. C. M., Elbers, J. A., Haapanala, S., Holst, J., Laurila, T., Lindroth, A., Nemitz, E., Röckmann, T., Vermeulen, A. T., and Mammarella, I.: Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment, Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, 2014. a
Peltola, O., Aslan, T., Ibrom, A., Nemitz, E., Rannik, Ü., and Mammarella, I.: The high-frequency response correction of eddy covariance fluxes – Part 1: An experimental approach and its interdependence with the time-lag estimation, Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, 2021. a, b, c, d, e, f, g, h, i
Rannik, Ü., Haapanala, S., Shurpali, N. J., Mammarella, I., Lind, S., Hyvönen, N., Peltola, O., Zahniser, M., Martikainen, P. J., and Vesala, T.: Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions, Biogeosciences, 12, 415–432, https://doi.org/10.5194/bg-12-415-2015, 2015. a, b
Rannik, Ü., Peltola, O., and Mammarella, I.: Random uncertainties of flux measurements by the eddy covariance technique, Atmos. Meas. Tech., 9, 5163–5181, https://doi.org/10.5194/amt-9-5163-2016, 2016. a
Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hörtnagl, L., Ibrom, A., Longdoz, B., Mauder, M., Merbold, L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C., Sedlák, P., Šigut, L., Vitale, D., and Papale, D.: Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations, Int. Agrophys., 32, 495–515, 2018. a, b, c
Smeets, C. J. P. P., Holzinger, R., Vigano, I., Goldstein, A. H., and Röckmann, T.: Eddy covariance methane measurements at a Ponderosa pine plantation in California, Atmos. Chem. Phys., 9, 8365–8375, https://doi.org/10.5194/acp-9-8365-2009, 2009. a
Werle, P., Mücke, R., and Slemr, F.: The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS), Appl. Phys. B, 57, 131–139, 1993. a
Wintjen, P., Ammann, C., Schrader, F., and Brümmer, C.: Correcting high-frequency losses of reactive nitrogen flux measurements, Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, 2020. a, b, c
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to...