Censor, Y.: Finite series-expansion reconstruction methods, P. IEEE, 71, 409–419, https://doi.org/10.1109/PROC.1983.12598, 1983.
Champion, R., Lenard, C. T., and Mills, T. M.: A variational approach to splines, ANZIAM J., 42, 119–135, https://doi.org/10.1017/S1446181100011652, 2000.
Drescher, A. C., Gadgil, A. J., Price, P. N., and Nazaroff, W. W.: Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing, Atmos. Environ., 30, 929–940, https://doi.org/10.1016/1352-2310(95)00295-2, 1996.
Du, K., Rood, M. J., Welton, E. J., Varma, R. M., Hashmonay, R. A.,
Kim, B. J., and Kemme, M. R.: Optical Remote Sensing to Quantify Fugitive Particulate Mass Emissions from Stationary Short-Term and Mobile Continuous Sources: Part I. Method and Examples, Environ. Sci. Technol., 45, 658–665, https://doi.org/10.1021/es101904q, 2011.
EPA: Measurement of Fugitive Emissions at a Landfill Practicing Leachate
Recirculation and Air Injection, EPA-600/R-05/088, EPA's Office of Research and Development, Washington, D.C., USA, 2005.
Gholami, A. and Hosseini, M.: A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals, Signal Process., 93, 1945–1960. https://doi.org/10.1016/j.sigpro.2012.12.008, 2013.
Giuli, D., Facheris, L., and Tanelli, S.: Microwave tomographic inversion technique based on stochastic approach for rainfall fields monitoring, IEEE T. Geosci. Remote, 37, 2536–2555, https://doi.org/10.1109/36.789649, 1999.
Hamarik, U., Palm, R., and Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level, J. Comput. Appl. Math., 236, 2146–2157, https://doi.org/10.1016/j.cam.2011.09.037, 2012.
Hashmonay, R. A.: Theoretical evaluation of a method for locating gaseous
emission hot spots, J. Air Waste Manage., 58, 1100–1106, https://doi.org/10.3155/1047-3289.58.8.1100, 2012.
Hashmonay, R. A., Yost, M. G., and Wu, C. F.: Computed tomography of air pollutants using radial scanning path-integrated optical remote sensing, Atmos. Environ., 33, 267–274, https://doi.org/10.1016/S1352-2310(98)00158-7, 1999.
Hashmonay, R. A., Natschke, D. F., Wagoner, K., Harris, D. B., Thompson, E.L,
and Yost, M. G.: Field Evaluation of a Method for Estimating Gaseous Fluxes from Area Sources Using Open-Path Fourier Transform Infrared, Environ. Sci. Technol., 35, 2309–2313, https://doi.org/10.1021/es0017108, 2001.
Herman, G. T.: Fundamentals of computerized tomography: Image reconstruction from projection, 2nd edn., Springer, New York, USA, 101–124, 2009.
Lawson, C. L. and Janson, R. J.: Solving least squares problems, Society for Industrial and Applied Mathematics, Philadelphia, 23, 158–165, https://doi.org/10.1137/1.9781611971217, 1995.
Mitasova, H., Mitas, L., Brown, W. M., Gerdes, D. P., Kosinovsky, I., and Baker, T.: Modelling spatially and temporally distributed phenomena: new methods and tools for GRASS GIS, Int. J. Geogr. Inf. Syst., 9, 433–446, https://doi.org/10.1080/02693799508902048, 1995.
Price, P. N., Fischer, M. L., Gadgil, A. J., and Sextro, R. G.: An algorithm
for real-time tomography of gas concentrations, using prior information about
spatial derivatives, Atmos. Environ., 35, 2827, https://doi.org/10.1016/S1352-2310(01)00082-6, 2001.
Radon, J.: On the determination of functions from their integral values along certain manifolds, IEEE T. Med. Imaging, 5, 170–176, 1986.
Samanta, A. and Todd, L. A.: Mapping chemicals in air using an environmental
CAT scanning system: evaluation of algorithms, Atmos. Environ., 34, 699–709,
https://doi.org/10.1016/S1352-2310(99)00331-3, 2000.
Todd, L. and Ramachandran, G.: Evaluation of Optical Source-Detector Configurations for Tomographic Reconstruction of Chemical Concentrations in Indoor Air, Am. Ind. Hyg. Assoc. J., 55, 1133–1143, https://doi.org/10.1080/15428119491018204, 1994.
Tsui, B. M. W., Zhao, X., Frey, E. C., and Gullberg, G. T.: Comparison between ML-EM and WLS-CG algorithms for SPECT image reconstruction, IEEE T. Nucl. Sci., 38, 1766–1772, https://doi.org/10.1109/23.124174, 1991.
Twynstra, M. G. and Daun, K. J.: Laser-absorption tomography beam
arrangement optimization using resolution matrices, Appl. Optics, 51, 7059–7068, https://doi.org/10.1364/AO.51.007059, 2012.
Verkruysse, W. and Todd L. A.: Improved method “grid translation” for mapping environmental pollutants using a two-dimensional CAT scanning system, Atmos. Environ., 38, 1801–1809, https://doi.org/10.1016/j.sigpro.2012.12.008, 2004.
Verkruysse, W. and Todd, L. A.: Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling, Environ. Sci. Technol., 39, 2247–2254, https://doi.org/10.1021/es035231v, 2005.
von Clarmann, T., De Clercq, C., Ridolfi, M., Höpfner, M., and Lambert, J.-C.: The horizontal resolution of MIPAS, Atmos. Meas. Tech., 2, 47–54, https://doi.org/10.5194/amt-2-47-2009, 2009.
Wu, C. F. and Chang, S. Y.: Comparisons of radial plume mapping algorithms for locating gaseous emission sources, Atmos. Environ., 45, 1476–1482, https://doi.org/10.1016/j.atmosenv.2010.12.016, 2011.
Wu, C. F., Yost, M. G., Hashmonay, R. A., and Park, D. Y.: Experimental evaluation of a radial beam geometry for mapping air pollutants using optical remote sensing and computed tomography, Atmos. Environ., 33, 4709–4716, https://doi.org/10.1016/S1352-2310(99)00218-6, 1999.