Articles | Volume 15, issue 4
https://doi.org/10.5194/amt-15-1021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-1021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollen towards pollen classification
Danaël Cholleton
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, 69622, Villeurbanne, France
TERA Sensor, ZI Rousset, 296 Avenue Georges Vacher, 13790, Rousset,
France
Émilie Bialic
TERA Sensor, ZI Rousset, 296 Avenue Georges Vacher, 13790, Rousset,
France
Antoine Dumas
TERA Sensor, ZI Rousset, 296 Avenue Georges Vacher, 13790, Rousset,
France
Pascal Kaluzny
TERA Sensor, ZI Rousset, 296 Avenue Georges Vacher, 13790, Rousset,
France
Patrick Rairoux
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, 69622, Villeurbanne, France
University of Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, 69622, Villeurbanne, France
Related authors
Sébastien Bau, Vincent Crenn, Joris Leglise, Sébastien Jacquinot, Christophe Debert, Denis Petitprez, Valentine Bizet, Lara Leclerc, Alain Miffre, Danael Cholleton, Alec Rose, Alexandre Tomas, Amel Kort, Didier Hebert, Aurélie Joubert, Florence Deschamps, Sébastien Ritoux, Lyes Ait Ali Yahia, and François Gaie-Levrel
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-39, https://doi.org/10.5194/ar-2025-39, 2025
Preprint under review for AR
Short summary
Short summary
This study reports from an inter-laboratory comparison to assess particle size distributions of three test aerosols using 35 OPCs from 16 partners over 40 weeks. Despite a common protocol and a shared reference OPC, notable inter-instrument differences appeared, highlighting the challenge of achieving consistent results across laboratories. The resulting database cannot yet allow define good laboratory practices, but it offers a methodology and reference data to improve OPC reliability.
Alain Miffre, Danaël Cholleton, Clément Noël, and Patrick Rairoux
Atmos. Meas. Tech., 16, 403–417, https://doi.org/10.5194/amt-16-403-2023, https://doi.org/10.5194/amt-16-403-2023, 2023
Short summary
Short summary
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with a π-polarimeter operating at lidar 180 ° and at (355, 532) nm wavelengths. The hematite depolarization equals (10±1) % at 355 nm for coarser particles, while that of silica is (33±1) %. This huge difference is explained by accounting for the high imaginary part of the hematite complex refractive index, thus revealing the key role played by light absorption in mineral dust lidar depolarization.
Sébastien Bau, Vincent Crenn, Joris Leglise, Sébastien Jacquinot, Christophe Debert, Denis Petitprez, Valentine Bizet, Lara Leclerc, Alain Miffre, Danael Cholleton, Alec Rose, Alexandre Tomas, Amel Kort, Didier Hebert, Aurélie Joubert, Florence Deschamps, Sébastien Ritoux, Lyes Ait Ali Yahia, and François Gaie-Levrel
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-39, https://doi.org/10.5194/ar-2025-39, 2025
Preprint under review for AR
Short summary
Short summary
This study reports from an inter-laboratory comparison to assess particle size distributions of three test aerosols using 35 OPCs from 16 partners over 40 weeks. Despite a common protocol and a shared reference OPC, notable inter-instrument differences appeared, highlighting the challenge of achieving consistent results across laboratories. The resulting database cannot yet allow define good laboratory practices, but it offers a methodology and reference data to improve OPC reliability.
Alain Miffre, Danaël Cholleton, Clément Noël, and Patrick Rairoux
Atmos. Meas. Tech., 16, 403–417, https://doi.org/10.5194/amt-16-403-2023, https://doi.org/10.5194/amt-16-403-2023, 2023
Short summary
Short summary
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with a π-polarimeter operating at lidar 180 ° and at (355, 532) nm wavelengths. The hematite depolarization equals (10±1) % at 355 nm for coarser particles, while that of silica is (33±1) %. This huge difference is explained by accounting for the high imaginary part of the hematite complex refractive index, thus revealing the key role played by light absorption in mineral dust lidar depolarization.
Cited articles
Bickel, W. S. and Stafford, M. E.: Biological Particles as Irregularly
Shaped Scatterers, in: Light Scattering by Irregularly Shaped Particles, edited by: Schuerman, D. W., Springer, Boston, MA, 299–305,
https://doi.org/10.1007/978-1-4684-3704-1_35, 1980.
Biedermann, T., Winther, L., Till, S. J., Panzner, P., Knulst, A., and
Valovirta, E.: Birch pollen allergy in Europe, Allergy, 74, 1237–1248,
https://doi.org/10.1111/all.13758, 2019.
Bielory, L., Lyons, K., and Goldberg, R.: Climate Change and Allergic
Disease, Curr. Allergy Asthm R., 12, 485–494, https://doi.org/10.1007/s11882-012-0314-z, 2012.
Bohlmann, S., Filioglou, M., Giannakaki, E., Shang, X., Saarto, A., and
Komppula, M.: Characterization of atmospheric pollen with active remote
sensing in Finland, in: Geophysical Research Abstracts, Geophysical Research Abstracts Vol. 20, EGU2018-12752, 2018.
Cao, X., Roy, G. A., and Bernier, R.: Lidar polarization discrimination of bioaerosols, Opt. Eng., 49,
116201, https://doi.org/10.1117/1.3505877, 2010.
Cholleton, D., Bialic, E., Dumas, A., Kaluzny, P., Rairoux, P., and Miffre,
A.: Laboratory evaluation of the (VIS, IR) scattering matrix of
complex-shaped ragweed pollen particles, J. Quant. Spectrosc. Ra., 254, 107223, https://doi.org/10.1016/j.jqsrt.2020.107223, 2020.
Comtois, P., Alcazar, P., and Neron, D.: Pollen counts statistics and its
relevance to precision, Aerobiologia, 15, 19–28, https://doi.org/10.1023/a:1007501017470, 1999.
Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., and Clot, B.:
All-optical automatic pollen identification: Towards an operational system,
Atmos. Environ., 140, 202–212, https://doi.org/10.1016/j.atmosenv.2016.05.062, 2016.
Dahl, Å., Strandhede, S.-O., and Wihl, J.-Å.: Ragweed – An allergy
risk in Sweden?, Aerobiologia, 15, 293–297,
https://doi.org/10.1023/A:1007678107552, 1999.
Giri, R., Morello, C., Heinson, Y. W., Kemppinen, O., Videen, G., Videen,
G., Videen, G., and Berg, M. J.: Generation of aerosol-particle
light-scattering patterns from digital holograms, Opt. Lett., 44, 819–822,
https://doi.org/10.1364/OL.44.000819, 2019.
Gómez Martín, J. C., Guirado, D., Frattin, E., Bermudez-Edo, M.,
Cariñanos Gonzalez, P., Olmo Reyes, F. J., Nousiainen, T.,
Gutiérrez, P. J., Moreno, F., and Muñoz, O.: On the application of
scattering matrix measurements to detection and identification of major
types of airborne aerosol particles: Volcanic ash, desert dust and pollen,
J. Quant. Spectrosc. Ra., 271, 107761, https://doi.org/10.1016/j.jqsrt.2021.107761, 2021.
Hamaoui-Laguel, L., Vautard, R., Liu, L., Solmon, F., Viovy, N.,
Khvorostyanov, D., Essl, F., Chuine, I., Colette, A., Semenov, M. A.,
Schaffhauser, A., Storkey, J., Thibaudon, M., and Epstein, M. M.: Effects of
climate change and seed dispersal on airborne ragweed pollen loads in
Europe, Nat. Clim. Change, 5, 766–771, https://doi.org/10.1038/nclimate2652, 2015.
Hesse, M. (Ed.): Pollen terminology: an illustrated handbook, Springer,
Wien; New York, 261 pp., https://doi.org/10.1007/978-3-211-79894-2, 2009.
Hirst, J. M.: An automatic volumetric spore trap, Ann. Appl. Biol., 39,
257–265, https://doi.org/10.1111/j.1744-7348.1952.tb00904.x, 1952.
Holler, S., Fuerstenau, S. D., and Skelsey, C. R.: Simultaneous two-color,
two-dimensional angular optical scattering patterns from airborne
particulates: Scattering results and exploratory analysis, J. Quant.
Spectrosc. Ra., 178, 167–175, https://doi.org/10.1016/j.jqsrt.2016.01.009, 2016.
Imhof, K., Probst, E., Seifert, B., Regenass, S., and Schmid-Grendelmeier,
P.: Ash pollen allergy: reliable detection of sensitization on the basis of
IgE to Ole e 1, Allergo Journal International, 23, 78–83,
https://doi.org/10.1007/s40629-014-0010-8, 2014.
Iwai, T.: Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica, Jpn. J. Appl. Phys., 52, 062404, https://doi.org/10.7567/JJAP.52.062404, 2013.
Jolliffe, I.: Principal Component Analysis, in: Encyclopedia of Statistics
in Behavioral Science, edited by: Everitt, B. S. and Howell, D. C., American Cancer Society, https://doi.org/10.1002/0470013192.bsa501, 2005.
Kemppinen, O., Laning, J. C., Mersmann, R. D., Videen, G., and Berg, M. J.:
Imaging atmospheric aerosol particles from a UAV with digital holography,
Sci. Rep., 10, 16085, https://doi.org/10.1038/s41598-020-72411-x, 2020.
Kim, G., Lee, S., Shin, S., and Park, Y.: Three-dimensional label-free
imaging and analysis of Pinus pollen grains using optical diffraction
tomography, Sci. Rep., 8, 1782, https://doi.org/10.1038/s41598-018-20113-w, 2018.
Kiselev, D., Bonacina, L., and Wolf, J.-P.: A flash-lamp based device for
fluorescence detection and identification of individual pollen grains, Rev.
Sci. Instrum., 84, 033302, https://doi.org/10.1063/1.4793792, 2013.
Lake, I. R., Jones, N. R., Agnew, M., Goodess, C. M., Giorgi, F.,
Hamaoui-Laguel, L., Semenov, M. A., Solomon, F., Storkey, J., Vautard, R.,
and Epstein, M. M.: Climate Change and Future Pollen Allergy in Europe,
Environ. Health Persp., 125, 385–391, https://doi.org/10.1289/EHP173, 2017.
Li, Y., Steiner, A., and Solmon, F.: Investigating the direct climatic
forcing of pollen and subpollen particles, American Geophysical Union, Fall Meeting 2013, abstract id. A11B-0020, 2013.
Martinez, A. M. and Kak, A. C.: Pca versus lda, IEEE T. Pattern Anal., 23, 228–233, 2001.
Matsuda, S. and Kawashima, S.: Relationship between laser light scattering
and physical properties of airborne pollen, J. Aerosol Sci., 124, 122–132,
https://doi.org/10.1016/j.jaerosci.2018.07.009, 2018.
Miki, K. and Kawashima, S.: Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa – establishment of an automated multi-taxa pollen counting estimation system (AME system), Atmos. Meas. Tech., 14, 685–693, https://doi.org/10.5194/amt-14-685-2021, 2021.
Mishchenko, M. I., Travis, L. D., and Lacis, A. A.: Scattering, Absorption,
and Emission of Light by Small Particles, Cambridge University Press, 492 pp., ISBN 9780521782524, 2002.
Mishchenko, M. I., Liu, L., and Videen, G.: Conditions of applicability of
the single-scattering approximation, Opt. Express, 15, 7522,
https://doi.org/10.1364/OE.15.007522, 2007.
Niederberger, V., Purohit, A., Oster, J. P., Spitzauer, S., Valenta, R., and
Pauli, G.: The allergen profile of ash (Fraxinus excelsior) pollen:
cross-reactivity with allergens from various plant species, Clin. Exp.
Allergy, 32, 933–941, https://doi.org/10.1046/j.1365-2222.2002.01369.x, 2002.
Nouri, S. A., Gregory, D. A., and Fuller, K.: Development of an
angle-scanning spectropolarimeter: Preliminary results, J. Quant. Spectrosc.
Ra., 206, 342–354, https://doi.org/10.1016/j.jqsrt.2017.11.024, 2018.
PalDat: https://www.paldat.org/, last access: 21 June 2021.
Pan, Y.-L., Hill, S. C., Pinnick, R. G., House, J. M., Flagan, R. C., and
Chang, R. K.: Dual-excitation-wavelength fluorescence spectra and elastic
scattering for differentiation of single airborne pollen and fungal
particles, Atmos. Environ., 45, 1555–1563, https://doi.org/10.1016/j.atmosenv.2010.12.042, 2011.
Petrov, D.: Photopolarimetrical properties of coronavirus model particles:
Spike proteins number influence, J. Quant. Spectrosc. Ra., 248, 107005, https://doi.org/10.1016/j.jqsrt.2020.107005, 2020.
Pope, F. D.: Pollen grains are efficient cloud condensation nuclei, Environ.
Res. Lett., 5, 044015, https://doi.org/10.1088/1748-9326/5/4/044015, 2010.
Prank, M., Chapman, D. S., Bullock, J. M., Belmonte, J., Berger, U., Dahl,
A., Jäger, S., Kovtunenko, I., Magyar, D., Niemelä, S.,
Rantio-Lehtimäki, A., Rodinkova, V., Sauliene, I., Severova, E.,
Sikoparija, B., and Sofiev, M.: An operational model for forecasting ragweed
pollen release and dispersion in Europe, Agr. Forest Meteorol., 182–183,
43–53, https://doi.org/10.1016/j.agrformet.2013.08.003, 2013.
Raman, P., Fuller, K. A., and Gregory, D. A.: Polarization signatures of
airborne particulates, Opt. Eng., 52, 074106,
https://doi.org/10.1117/1.OE.52.7.074106, 2013.
Šaulienė, I., Šukienė, L., Daunys, G., Valiulis, G., Vaitkevičius, L., Matavulj, P., Brdar, S., Panic, M., Sikoparija, B., Clot, B., Crouzy, B., and Sofiev, M.: Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps, Atmos. Meas. Tech., 12, 3435–3452, https://doi.org/10.5194/amt-12-3435-2019, 2019.
Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou, K.: Real-time pollen monitoring using digital holography, Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020, 2020.
Schaefer, J., Milling, M., Schuller, B. W., Bauer, B., Brunner, J. O.,
Traidl-Hoffmann, C., and Damialis, A.: Towards automatic airborne pollen
monitoring: From commercial devices to operational by mitigating
class-imbalance in a deep learning approach, Sci. Total Environ., 796,
148932, https://doi.org/10.1016/j.scitotenv.2021.148932, 2021.
Schaffner, U., Steinbach, S., Sun, Y., Skjøth, C. A., Weger, L. A. de,
Lommen, S. T., Augustinus, B. A., Bonini, M., Karrer, G., Šikoparija,
B., Thibaudon, M., and Müller-Schärer, H.: Biological weed control
to relieve millions from Ambrosia allergies in Europe, Nat. Commun., 11,
1745, https://doi.org/10.1038/s41467-020-15586-1, 2020.
Schwendemann, A. B., Wang, G., Mertz, M. L., McWilliams, R. T., Thatcher, S.
L., and Osborn, J. M.: Aerodynamics of saccate pollen and its implications
for wind pollination, Am. J. Bot., 94, 1371–1381,
https://doi.org/10.3732/ajb.94.8.1371, 2007.
Sicard, M., Jorba, O., Ho, J. J., Izquierdo, R., De Linares, C., Alarcón, M., Comerón, A., and Belmonte, J.: Measurement report: Characterization of the vertical distribution of airborne Pinus pollen in the atmosphere with lidar-derived profiles – a modeling case study in the region of Barcelona, NE Spain, Atmos. Chem. Phys., 21, 17807–17832, https://doi.org/10.5194/acp-21-17807-2021, 2021.
Siljamo, P., Sofiev, M., Filatova, E., Grewling, Ł., Jäger, S.,
Khoreva, E., Linkosalo, T., Ortega Jimenez, S., Ranta, H.,
Rantio-Lehtimäki, A., Svetlov, A., Veriankaite, L., Yakovleva, E., and
Kukkonen, J.: A numerical model of birch pollen emission and dispersion in
the atmosphere. Model evaluation and sensitivity analysis, Int. J.
Biometeorol., 57, 125–136, https://doi.org/10.1007/s00484-012-0539-5, 2013.
Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G., and Šikoparija, B.:
Common ragweed: A threat to environmental health in Europe, Environ. Int.,
61, 115–126, https://doi.org/10.1016/j.envint.2013.08.005, 2013.
Spänkuch, D., Döhler, W., and Güldner, J.: Effect of coarse
biogenic aerosol on downwelling infrared flux at the surface, J. Geophys.
Res., 105, 17341–17350, https://doi.org/10.1029/2000JD900173, 2000.
Surbek, M., Esen, C., Schweiger, G., and Ostendorf, A.: Pollen
characterization and identification by elastically scattered light, J.
Biophotonics, 4, 49–56, https://doi.org/10.1002/jbio.200900088, 2011.
Zhang, X., Rao, R., Huang, Y., Mao, M., Berg, M. J., and Sun, W.: Black
carbon aerosols in urban central China, J. Quant. Spectrosc. Ra., 150, 3–11, https://doi.org/10.1016/j.jqsrt.2014.03.006, 2015.
Zink, K., Kaufmann, P., Petitpierre, B., Broennimann, O., Guisan, A.,
Gentilini, E., and Rotach, M. W.: Numerical ragweed pollen forecasts using
different source maps: a comparison for France, Int. J. Biometeorol., 61,
23–33, https://doi.org/10.1007/s00484-016-1188-x, 2017.
Ziska, L., Knowlton, K., Rogers, C., Dalan, D., Tierney, N., Elder, M. A.,
Filley, W., Shropshire, J., Ford, L. B., Hedberg, C., Fleetwood, P.,
Hovanky, K. T., Kavanaugh, T., Fulford, G., Vrtis, R. F., Patz, J. A.,
Portnoy, J., Coates, F., Bielory, L., and Frenz, D.: Recent warming by
latitude associated with increased length of ragweed pollen season in
central North America, P. Natl. Acad. Sci. USA, 108, 4248–4251,
https://doi.org/10.1073/pnas.1014107108, 2011.
Short summary
While pollen impacts public health and the Earth’s climate, the identification of each pollen taxon remains challenging. In this context, a laboratory evaluation of the polarimetric light-scattering characteristics of ragweed, ash, birch and pine pollen, when embedded in ambient air, is here performed at two wavelengths. Interestingly, the achieved precision of the retrieved scattering matrix elements allows unequivocal light scattering characteristics of each studied taxon to be identified.
While pollen impacts public health and the Earth’s climate, the identification of each pollen...