Articles | Volume 15, issue 11
https://doi.org/10.5194/amt-15-3629-2022
https://doi.org/10.5194/amt-15-3629-2022
Research article
 | 
16 Jun 2022
Research article |  | 16 Jun 2022

An all-sky camera image classification method using cloud cover features

Xiaotong Li, Baozhu Wang, Bo Qiu, and Chao Wu

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
High-spatial-resolution retrieval of cloud droplet size distribution from polarized observations of the cloudbow
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023,https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023,https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023,https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022,https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022,https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary

Cited articles

Calbo, J., and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. Ocean. Tech., 25, 3–14, https://doi.org/10.1175/2007JTECHA959.1, 2008. 
Cao, Z. H., Hao, J. X., Feng, L., Jones, H. R. A., Li, J., and Xu, J.: Data processing and data products from 2017 to 2019 campaign of astronomical site testing at Ali, Daocheng and Muztagh-ata, Res. Astron. Astrophys., https://doi.org/10.1088/1674-4527/20/6/82, 20, 082, 2020. 
Cristianini, N. and Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511801389, 2000. 
Dev, S., Lee, Y. H., and Winkler, S.: Categorization of cloud image patches using an improved texton-based approach, in: 2015 IEEE Image Proc., Quebec City, QC, Canada, 27–30 September 2015, 422–426, https://doi.org/10.1109/ICIP.2015.7350833, 2015. 
Esteves, J., Cao, Y., Silva, N. P. D., Pestana, R., and Wang, Z.: Identification of clouds using an all-sky imager, in: 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021, 1–5, https://doi.org/10.1109/PowerTech46648.2021.9494868, 2021. 
Download
Short summary
The all-sky camera images can reflect the local cloud cover, which is considerable for astronomical observatory site selection. Therefore, the realization of automatic classification of the images is very important. In this paper, three cloud cover features are proposed to classify the images. The proposed method is evaluated on a large dataset, and the method achieves an accuracy of 96.58 % and F1_score of 96.24 %, which greatly improves the efficiency of automatic processing of the images.