Articles | Volume 15, issue 23
https://doi.org/10.5194/amt-15-7049-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-7049-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas
CORRESPONDING AUTHOR
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Christian Lemmerz
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Alexander Geiß
Meteorologisches Institut, Ludwig-Maximilians-Universität, 80333 Munich, Germany
Oliver Lux
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Uwe Marksteiner
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Stephan Rahm
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Oliver Reitebuch
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Andreas Schäfler
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Fabian Weiler
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany
Related authors
Zacharie Titus, Marine Bonazzola, Hélène Chepfer, Artem Feofilov, Marie-Laure Roussel, Benjamin Witschas, and Sophie Bastin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2065, https://doi.org/10.5194/egusphere-2025-2065, 2025
Short summary
Short summary
Aeolus spaceborne Doppler Wind Lidar observes perfectly co-located vertical profiles of clouds and vertical profiles of horizontal wind that can be used to study cloud-wind interactions. At regional scale, we show that over the Indian Ocean, high cloud fractions increase when the Tropical Easterly Jet is active. At a smaller scale, we observe for the first time from space differences in the wind profiles within the cloud and its surrounding clear sky, that can be imputed to convective motions.
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech., 18, 2149–2181, https://doi.org/10.5194/amt-18-2149-2025, https://doi.org/10.5194/amt-18-2149-2025, 2025
Short summary
Short summary
ESA's Aeolus mission, launched in 2018, has exceeded expectations, providing valuable global wind lidar data for nearly 5 years. Its data have improved weather forecasting, with Mie-cloudy winds proving to be especially precise. Challenges have emerged, such as unexpected misalignments in signal angles and reduced signal levels due to beam clipping and laser issues. Lessons from Aeolus highlight the need for better optical alignment and active control systems for future lidar missions.
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Short summary
This study assesses the quality of Aeolus wind measurements over the tropical Atlantic. The results identified the accuracy and precision of the Aeolus wind measurements and the potential source of errors. For instance, the study revealed atmospheric conditions that can deteriorate the measurement quality, such as weaker laser signal in cloudy or dusty conditions, and confirmed the presence of an orbital-dependant bias. These results can help to improve the Aeolus wind measurement algorithm.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Ada Mariska Koning, Louise Nuijens, Christian Mallaun, Benjamin Witschas, and Christian Lemmerz
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022, https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary
Short summary
Wind measurements from the mixed layer to cloud tops are scarce, causing a lack of knowledge on wind mixing between and within these layers. We use airborne observations of wind profiles and local wind at high frequency to study wind transport in cloud fields. A case with thick clouds had its maximum transport in the cloud layer, caused by eddies > 700 m, which was not expected from turbulence theory. In other cases large eddies undid transport of smaller eddies resulting in no net transport.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Zacharie Titus, Marine Bonazzola, Hélène Chepfer, Artem Feofilov, Marie-Laure Roussel, Benjamin Witschas, and Sophie Bastin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2065, https://doi.org/10.5194/egusphere-2025-2065, 2025
Short summary
Short summary
Aeolus spaceborne Doppler Wind Lidar observes perfectly co-located vertical profiles of clouds and vertical profiles of horizontal wind that can be used to study cloud-wind interactions. At regional scale, we show that over the Indian Ocean, high cloud fractions increase when the Tropical Easterly Jet is active. At a smaller scale, we observe for the first time from space differences in the wind profiles within the cloud and its surrounding clear sky, that can be imputed to convective motions.
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech., 18, 2149–2181, https://doi.org/10.5194/amt-18-2149-2025, https://doi.org/10.5194/amt-18-2149-2025, 2025
Short summary
Short summary
ESA's Aeolus mission, launched in 2018, has exceeded expectations, providing valuable global wind lidar data for nearly 5 years. Its data have improved weather forecasting, with Mie-cloudy winds proving to be especially precise. Challenges have emerged, such as unexpected misalignments in signal angles and reduced signal levels due to beam clipping and laser issues. Lessons from Aeolus highlight the need for better optical alignment and active control systems for future lidar missions.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data, 17, 1295–1328, https://doi.org/10.5194/essd-17-1295-2025, https://doi.org/10.5194/essd-17-1295-2025, 2025
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign-specific instrument operation, data processing, and data quality. The data set comprises in situ and remote sensing observations from three research aircraft: HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Konstantin Krüger, Andreas Schäfler, Martin Weissmann, and George C. Craig
Weather Clim. Dynam., 5, 491–509, https://doi.org/10.5194/wcd-5-491-2024, https://doi.org/10.5194/wcd-5-491-2024, 2024
Short summary
Short summary
Initial conditions of current numerical weather prediction models insufficiently represent the sharp vertical gradients across the midlatitude tropopause. Observation-space data assimilation output is used to study the influence of assimilated radiosondes on the tropopause. The radiosondes reduce systematic biases of the model background and sharpen temperature and wind gradients in the analysis. Tropopause sharpness is still underestimated in the analysis, which may impact weather forecasts.
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Short summary
This study assesses the quality of Aeolus wind measurements over the tropical Atlantic. The results identified the accuracy and precision of the Aeolus wind measurements and the potential source of errors. For instance, the study revealed atmospheric conditions that can deteriorate the measurement quality, such as weaker laser signal in cloudy or dusty conditions, and confirmed the presence of an orbital-dependant bias. These results can help to improve the Aeolus wind measurement algorithm.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022, https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
Short summary
A comprehensive data set of airborne lidar water vapour profiles is compared with ERA5 reanalyses for a robust characterization of the vertical structure of the mid-latitude lower-stratospheric moist bias. We confirm a moist bias of up to 55 % at 1.3 km altitude above the tropopause and uncover a decreasing bias beyond. Collocated O3 and H2O observations reveal a particularly strong bias in the mixing layer, indicating insufficiently modelled transport processes fostering the bias.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Ada Mariska Koning, Louise Nuijens, Christian Mallaun, Benjamin Witschas, and Christian Lemmerz
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022, https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary
Short summary
Wind measurements from the mixed layer to cloud tops are scarce, causing a lack of knowledge on wind mixing between and within these layers. We use airborne observations of wind profiles and local wind at high frequency to study wind transport in cloud fields. A case with thick clouds had its maximum transport in the cloud layer, caused by eddies > 700 m, which was not expected from turbulence theory. In other cases large eddies undid transport of smaller eddies resulting in no net transport.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
Short summary
During the VAL-OUC campaign, we established a coherent Doppler lidar (CDL) network over China to verify the Level 2B (L2B) products from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations, the L2B products from Aeolus are compared with those from CDLs. To our knowledge, the VAL-OUC campaign is the most extensive so far between CDLs and Aeolus in the lower troposphere for different atmospheric scenes. The vertical velocity impact on the HLOS retrieval from Aeolus is evaluated.
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021, https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Short summary
This paper summarizes the identification and correction of one of the most important systematic error sources for the wind measurements of the ESA satellite Aeolus. It depicts the effects of small temperature variations in the primary telescope mirror on the quality of the wind products and describes the approach to correct for it in the near-real-time processing. Moreover, the performance of the correction approach is assessed, and alternative approaches are discussed.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Andreas Schäfler, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 21, 5217–5234, https://doi.org/10.5194/acp-21-5217-2021, https://doi.org/10.5194/acp-21-5217-2021, 2021
Short summary
Short summary
First-ever, collocated ozone and water vapor lidar observations across the tropopause are applied to investigate the extratropical transition layer (ExTL). The combined view of a quasi-instantaneous cross section and its tracer–tracer depiction allows us to analyze the ExTL shape and composition and the formation of mixing lines in relation to the dynamic situation. Such lidar data are relevant for future upper-tropospheric and lower-stratospheric investigations and model validations.
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Short summary
This study provides an overview of validation activities to determine the Aeolus HLOS wind errors and to understand the biases by investigating possible dependencies and testing bias correction approaches. To ensure meaningful validation statistics, collocated radiosondes and two different global NWP models, the ECMWF IFS and the ICON model (DWD), are used as reference data. To achieve an estimate for the Aeolus instrumental error the representativeness errors for the comparisons are evaluated.
Cited articles
Ansmann, A., Wandinger, U., Le Rille, O., Lajas, D., and Straume, A.: Particle
backscatter and extinction profiling with the spaceborne
high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,
Appl. Opt., 46, 6606–6622, 2007. a
Baars, H., Herzog, A., Heese, B., Ohneiser, K., Hanbuch, K., Hofer, J., Yin, Z., Engelmann, R., and Wandinger, U.: Validation of Aeolus wind products above the Atlantic Ocean, Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, 2020. a, b, c
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry,
B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R.,
Ma, Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard,
L. P., Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured
Wind Profiles: The Missing Link in the Global Observing System, B.
Am. Meteorol. Soc., 95, 543–564,
https://doi.org/10.1175/BAMS-D-12-00164.1, 2014. a
Bedka, K. M., Nehrir, A. R., Kavaya, M., Barton-Grimley, R., Beaubien, M., Carroll, B., Collins, J., Cooney, J., Emmitt, G. D., Greco, S., Kooi, S., Lee, T., Liu, Z., Rodier, S., and Skofronick-Jackson, G.: Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign, Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, 2021. a, b, c
Belova, E., Kirkwood, S., Voelger, P., Chatterjee, S., Satheesan, K., Hagelin, S., Lindskog, M., and Körnich, H.: Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden, Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, 2021. a
Bögel, W. and Baumann, R.: Test and calibration of the DLR Falcon wind
measuring system by maneuvers, J. Atmos. Ocean. Technol.,
8, 5–18, 1991. a
Browning, K. and Wexler, R.: The determination of kinematic properties of a
wind field using Doppler radar, J. Appl. Meteorol., 7, 105–113,
https://doi.org/10.1175/1520-0450(1968)007<0105:tdokpo>2.0.co;2, 1968. a
Chanin, M., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler lidar
for measuring winds in the middle atmosphere, Geophys. Res. Lett., 16,
1273–1276, 1989. a
Chou, C.-C., Kushner, P. J., Laroche, S., Mariani, Z., Rodriguez, P., Melo, S., and Fletcher, C. G.: Validation of the Aeolus Level-2B wind product over Northern Canada and the Arctic, Atmos. Meas. Tech., 15, 4443–4461, https://doi.org/10.5194/amt-15-4443-2022, 2022. a
Chouza, F., Reitebuch, O., Groß, S., Rahm, S., Freudenthaler, V., Toledano, C., and Weinzierl, B.: Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements, Atmos. Meas. Tech., 8, 2909–2926, https://doi.org/10.5194/amt-8-2909-2015, 2015. a
Chouza, F., Reitebuch, O., Jähn, M., Rahm, S., and Weinzierl, B.: Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements, Atmos. Chem. Phys., 16, 4675–4692, https://doi.org/10.5194/acp-16-4675-2016, 2016. a
Chouza, F., Witschas, B., and Reitebuch, O.: Heterodyne
high-spectral-resolution lidar, Appl. Opt., 56, 8121–8134, 2017. a
Dabas, A., Denneulin, M., Flamant, P., Loth, C., Garnier, A., and
Dolfi-Bouteyre, A.: Correcting winds measured with a Rayleigh Doppler lidar
from pressure and temperature effects, Tellus A, 60, 206–215, 2008. a
de Kloe, J., Stoffelen, A., Tan, D., Andersson, E., Rennie, M., Dabas, A., Poli, P., and Huber, D.: ADM-Aeolus Level-2B/2C Processor Input/Output Data Definitions Interface Control Document, AED-SD-ECMWF-L2B-037, v. 3.70, 122 pp., https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-2C-Input-Output-DD-ICD.pdf, last access: 5 December 2022. a
European Space Agency (ESA): The four candidate Earth explorer core missions: Atmospheric dynamics mission, ESA Report for Mission Selection ESA SP-, 1233, 145 pp., ISBN 92-9092-528-0, https://earth.esa.int/eogateway/documents/20142/37627/The%20four%20Candidate%20Earth%20Explorer%20Core%20Missions%20-%20Atmospheric%20Dynamics%20Mission?text=worldview-3 (last access: 5 December 2022), 1999. a, b
European Space Agency (ESA): ADM-Aeolus Science Report, ESA SP-1311, 121 pp., European Space Agency, ISBN 978-92-9221-404-3, https://esamultimedia.esa.int/multimedia/publications/SP-1311/SP-1311.pdf (last access: 5 December 2022), 2008. a
European Space Agency (ESA): L2B assimilated wind products, European Space Agency, https://aeolus-ds.eo.esa.int/oads/access/collection/L2B_Wind_Products, last access: 5 December 2022. a
Fehr, T., Piña, A., Amiridis, V., Baars, H., von Bismarck, J., Borne, M., Cazenave, Q., Chen, S., Flamant, C., Gaetani, M., Knipperz, P., Koopman, R., Lemmerz, C., Marinou, E., Močnik, G., Parrinello, T., Reitebuch, O., Skofronick-Jackson, G., Straume, A. G., and Zenk, C.: The Joint Aeolus
Tropical Atlantic Campaign – First results for Aeolus
calibration/validation and science in the tropics, ESA Atmospheric Science
Conference (2021), Online, 22–26 November 2021, 12.11.32; LK 01, https://atmos2021.esa.int/agenda (last access: 5 December 2022), 2021. a
Feofilov, A. G., Chepfer, H., Noël, V., Guzman, R., Gindre, C., Ma, P.-L., and Chiriaco, M.: Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles, Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, 2022. a
Flamant, P., Cuesta, J., Denneulin, M.-L., Dabas, A., and Huber, D.: ADM-Aeolus
retrieval algorithms for aerosol and cloud products, Tellus A, 60, 273–286, 2008. a
Flament, T., Trapon, D., Lacour, A., Dabas, A., Ehlers, F., and Huber, D.: Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm, Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, 2021. a
Flesia, C. and Korb, C.: Theory of the double-edge molecular technique for
Doppler lidar wind measurement, Appl. Opt., 38, 432–440, 1999. a
Gentry, B. M., Chen, H., and Li, S. X.: Wind measurements with 355-nm
molecular Doppler lidar, Opt. Lett., 25, 1231–1233, 2000. a
Giez, A., Mallaun, C., Zöger, M., Dörnbrack, A., and Schumann, U.:
Static pressure from aircraft trailing-cone measurements and numerical
weather-prediction analysis, J. Aircraft, 54, 1728–1737, 2017. a
Guo, J., Liu, B., Gong, W., Shi, L., Zhang, Y., Ma, Y., Zhang, J., Chen, T., Bai, K., Stoffelen, A., de Leeuw, G., and Xu, X.: Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China, Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, 2021. a, b, c
Iglewicz, B. and Hoaglin, D. C.: How to Detect and Handle Outliers, American Society for Quality Control, Statistics Division, vol. 16, ASQ Quality Press, 85 pp., ISBN 0-87389-247-X, 1993. a
Iwai, H., Aoki, M., Oshiro, M., and Ishii, S.: Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan, Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021, 2021. a, b, c
Kanitz, T., Lochard, J., Marshall, J., McGoldrick, P., Lecrenier, O., Bravetti, P., Reitebuch, O., Rennie, M., Wernham, D., and Elfving, A.: Aeolus First Light – First Glimpse, Proc. SPIE, 11180, 111801R, https://doi.org/10.1117/12.2535982, 2019. a, b, c
Köpp, F., Rahm, S., and Smalikho, I.: Characterization of Aircraft Wake
Vortices by 2-µm Pulsed Doppler Lidar, J. Atmos.
Ocean. Technol., 21, 194–206, 2004. a
Krautstrunk, M. and Giez, A.: The Transition From FALCON to HALO Era Airborne Atmospheric Research, in: Atmospheric Physics. Research Topics in Aerospace, edited by: Schumann, U., Springer, Berlin, Heidelberg, 609–624, https://doi.org/10.1007/978-3-642-30183-4_37, 2012. a
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Schäfler, A., and Reitebuch, O.: Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus, Atmos. Meas. Tech., 11, 3297–3322, https://doi.org/10.5194/amt-11-3297-2018, 2018. a, b
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., and Reitebuch, O.: Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator, Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, 2020. a, b, c
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., Schäfler, A., and Reitebuch, O.: Retrieval improvements for the ALADIN Airborne Demonstrator in support of the Aeolus wind product validation, Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, 2022a. a
Lux, O., Witschas, B., Geiß, A., Lemmerz, C., Weiler, F., Marksteiner, U., Rahm, S., Schäfler, A., and Reitebuch, O.: Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign, Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, 2022b. a, b, c
Mallaun, C., Giez, A., and Baumann, R.: Calibration of 3-D wind measurements on a single-engine research aircraft, Atmos. Meas. Tech., 8, 3177–3196, https://doi.org/10.5194/amt-8-3177-2015, 2015. a
Marksteiner, U., Lemmerz, C., Lux, O., Rahm, S., Schäfler, A., Witschas,
B., and Reitebuch, O.: Calibrations and Wind Observations of an Airborne
Direct-Detection Wind LiDAR Supporting ESA's Aeolus Mission, Remote
Sens., 10, 2056, https://doi.org/10.3390/rs10122056, 2018. a, b
Marseille, G.-J., Stoffelen, A., and Barkmeijer, J.: Impact assessment of
prospective spaceborne Doppler wind lidar observation scenarios, Tellus A
Dynam. Meteorol. Oceanogr., 60, 234–248, 2008. a
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021. a, b, c
McKay, J. A.: Assessment of a multibeam Fizeau wedge interferometer for
Doppler wind lidar, Appl. Opt., 41, 1760–1767, 2002. a
Reitebuch, O.: The Spaceborne Wind Lidar Mission ADM-Aeolus, in: Atmospheric Physics. Research Topics in Aerospace, edited by: Schumann, U., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-30183-4_49, 2012. a, b
Reitebuch, O., Lemmerz, C., Nagel, E., Paffrath, U., Durand, Y.,
Endemann, M., Fabre, F., and Chaloupy, M.: The Airborne Demonstrator
for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I:
Instrument Design and Comparison to Satellite Instrument, J. Atmos. Ocean.
Technol., 26, 2501–2515, 2009. a, b
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Witschas, B.,
and Neely, R.: WindVal-Joint DLR-ESA-NASA Wind Validation for Aeolus,
Final Report Contract No. 4000114053/15/NL/FF/gp, European Space
Agency (ESA), Noordwijk, the Netherlands, https://doi.org/10.5270/esa-uc463ur, 2017. a
Reitebuch O., Marksteiner U., Rompel M., Meringer M., Schmidt K., Huber D., Nikolaus I., Dabas A., Marshall J., de Bruin F., Kanitz T., and Straume A.-G.: Aeolus End-to-End Simulator and Wind Retrieval Algorithms up to Level 1B, in: EPJ Web Conf., EDP Sciences, 237, 01010, vol. 176, 02010,
https://doi.org/10.1051/epjconf/202023701010, 2020, 2018. a
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiss, A., Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M., de Kloe, J., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T., Straume, A.-G., Fehr, T., von Bismark, J., Floberghagen, R., and Parrinello,
T.: Initial assessment of the performance of the first Wind Lidar in
space on Aeolus, in: EPJ Web Conf., 237, 01010,
https://doi.org/10.1051/epjconf/202023701010, 2020. a, b, c
Rennie, M. and Isaksen, L.: The NWP impact of Aeolus Level-2B Winds
at ECMWF, ECMWF, https://doi.org/10.21957/alift7mhr, 2020. a
Rennie, M., Tan, D., Andersson, E., Poli, P., Dabas, A., De Kloe, J., Marseille, G.-J., and Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical Basis Document (Mathematical Description of the Aeolus Level-2B Processor), ECMWF, https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-Algorithm-ATBD.pdf (last access: 5 December 2022), 2020. a, b
Rennie, M. P.: An assessment of the expected quality of Aeolus Level-2B wind
products, in: EPJ Web of Conferences, EDP Sciences, vol. 176, 02015, https://doi.org/10.1051/epjconf/201817602015, 2018. a, b
Rennie, M. P., Isaksen, L., Weiler, F., de Kloe, J., Kanitz, T., and Reitebuch,
O.: The impact of Aeolus wind retrievals on ECMWF global weather
forecasts, Q. J. Roy. Meteorol. Soc., 147, 3555–3586,
https://doi.org/10.1002/qj.4142, 2021. a, b
Schäfler, A., Craig, G., Wernli, H., Arbogast, P., Doyle, J. D., McTaggart-Cowan, R., Methven, J., Rivière, G., Ament, F., Boettcher, M., Bramberger, M., Cazenave, Q., Cotton, R., Crewell, S., Delanoë, J., Dörnbrack, A., Ehrlich, A., Ewald, F., Fix, A., Grams, C. M., Gray, S. L., Grob, H., Groß, S., Hagen, M., Harvey, B., Hirsch, L., Jacob, M., Kölling, T., Konow, H., Lemmerz, C., Lux, O., Magnusson, L., Mayer, B., Mech, M., Moore, R., Pelon, J., Quinting, J., Rahm, S., Rapp, M., Rautenhaus, M., Reitebuch, O., Reynolds, C. A., Sodemann, H., Spengler, T., Vaughan, G., Wendisch, M., Wirth, M., Witschas, B., Wolf, K., and Zinner, T.: The North Atlantic Waveguide and Downstream Impact Experiment,
B. Am. Meteorol. Soc., 99, 1607–1637, 2018. a, b, c
Schäfler, A., Harvey, B., Methven, J., Doyle, J. D., Rahm, S., Reitebuch,
O., Weiler, F., and Witschas, B.: Observation of jet stream winds during
NAWDEX and characterization of systematic meteorological analysis errors,
Mon. Weather Rev., 148, 2889–2907, 2020. a
Stoffelen, A., Pailleux, J., Källen, E., Vaughan, M., Isaksen, L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., Meynart, R., Endemann, M., and Ingmann, P.: The atmospheric dynamics mission for global wind field measurement, B. Am. Meteorol. Soc., 86, 73–88, 2005. a
Straume, A. G., Elfving, A., Wernham, D., de Bruin, F., Kanitz, T., Schuettemeyer, D., von Bismarck, J., Buscaglione, F., Lecrenier, O., and McGoldrick, P.: ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch, in: EPJ Web of Conferences, EDP Sciences, vol. 176, 04007, https://doi.org/10.1051/epjconf/201817604007, 2018. a
Straume, A.-G., Rennie, M., Isaksen, L., de Kloe, J., Marseille, G.-J.,
Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, D., Reitebuch,
O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas,
B., Meringer, M., Schmidt, K., Nikolaus, I., Geiss, A., Flamant, P., Kanitz,
T., Wernham, D., von Bismark, J., Bley, S., Fehr, T., Floberghagen, R., and
Parrinello, T.: ESA's Space-based Doppler Wind Lidar Mission
Aeolus – First Wind and Aerosol Product Assessment Results,
in: EPJ Web Conf., 237, 1007,
https://doi.org/10.1051/epjconf/202023701007, 2020. a, b
Tan, D. G. and Andersson, E.: Simulation of the yield and accuracy of wind
profile measurements from the Atmospheric Dynamics Mission (ADM-Aeolus),
Q. J. Roy. Meteorol. Soc., 131,
1737–1757, 2005. a
Tan, D. G., Andersson, E., Fisher, M., and Isaksen, L.: Observing-system
impact assessment using a data assimilation ensemble technique: application
to the ADM-Aeolus wind profiling mission, Q. J. Roy. Meteorol. Soc., 133,
381–390, 2007. a
Tan, D., Andersson, E., Dabas, A., Poli, P., Stoffelen, A., De Kloe, J., and
Huber, D.: ADM-Aeolus Level-2B/2C Processor Input/Output Data Definitions
Interface Control Document, https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-2C-Input-Output-DD-ICD.pdf (last access: 5 December 2022), 2008a. a
Tan, D. G. H., Andersson, E., de Kloe, J., Marseille, G., Stoffelen, A., Poli, P., Denneulin, M., Dabas, A., Huber, D., Reitebuch, O., Flamant, P., Le Rille, O., and Nett, H.: The ADM-Aeolus wind retrieval algorithms, Tellus Series A, 60, 191–205, 2008b. a
Tan, D., Rennie, M., Andersson, E., Poli, P., Dabas, A., de Kloe, J.,
Marseille, G.-J., and Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical
Basis Document, Tech. rep., AE-TN-ECMWF-L2BP-0023, https://earth.esa.int/eogateway/documents/20142/37627/Aeolus_L2B_Algorithm_TBD.pdf/5a116873-473e-84b7-5e39-2480edde1589 (last access: 5 December 2022), 2017. a, b, c
Weiler, F., Kanitz, T., Wernham, D., Rennie, M., Huber, D., Schillinger, M., Saint-Pe, O., Bell, R., Parrinello, T., and Reitebuch, O.: Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite, Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, 2021a. a
Weiler, F., Rennie, M., Kanitz, T., Isaksen, L., Checa, E., de Kloe, J., Okunde, N., and Reitebuch, O.: Correction of wind bias for the lidar on board Aeolus using telescope temperatures, Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021, 2021b. a
Weissmann, M. and Cardinali, C.: Impact of airborne Doppler lidar
observations on ECMWF forecasts, Q. J. Roy. Meteorol. Soc., 133, 107–116,
2007. a
Witschas, B.: Analytical model for Rayleigh–Brillouin line shapes in air:
errata, Appl. Opt., 50, 5758–5758, 2011a. a
Witschas, B.: Experiments on spontaneous Rayleigh-Brillouin scattering in
air, PhD thesis, German Aerospace Center, Oberpfaffenhofen, and
Friedrich-Schiller University, Jena, Germany, 112 pp., https://elib.dlr.de/98547/ (last access: 5 December 2022), 2011b. a
Witschas, B., Vieitez, M. O., van Duijn, E.-J., Reitebuch, O., van de Water,
W., and Ubachs, W.: Spontaneous Rayleigh–Brillouin scattering of
ultraviolet light in nitrogen, dry air, and moist air, Appl. Opt., 49,
4217–4227, 2010. a
Witschas, B., Gu, Z., and Ubachs, W.: Temperature retrieval from
Rayleigh-Brillouin scattering profiles measured in air, Opt. Express, 22,
29655–29667, 2014. a
Witschas, B., Gisinger, S., Rahm, S., Dörnbrack, A., Fritts, D. C., and Rapp, M.: Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-234, in review, 2022. a
Wu, S., Sun, K., Dai, G., Wang, X., Liu, X., Liu, B., Song, X., Reitebuch, O., Li, R., Yin, J., and Wang, X.: Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China, Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, 2022. a, b, c
Zuo, H., Hasager, C. B., Karagali, I., Stoffelen, A., Marseille, G.-J., and de Kloe, J.: Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia, Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, 2022. a, b, c
Executive editor
This manuscript discusses the basis and uncertainties of the Aeolus mission performance and its improvement over time. Aeolus is a key ESA mission for atmospheric dynamics, greatly beneficial for numerical weather prediction and Earth system dynamics studies. The lessons learned in understanding and improving the atmospheric measurement technique described here will be of great importance for the Aeolus follow-on mission, now being planned by EUMETSAT and ESA in Europe.
This manuscript discusses the basis and uncertainties of the Aeolus mission performance and its...
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
In August 2018, the first wind lidar Aeolus was launched into space and has since then been...
Special issue