Articles | Volume 16, issue 19
https://doi.org/10.5194/amt-16-4319-2023
https://doi.org/10.5194/amt-16-4319-2023
Research article
 | 
04 Oct 2023
Research article |  | 04 Oct 2023

A novel inlet for enriching concentrations of reactive organic gases in low sampling flows

Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz

Related authors

Constraining Light Dependency in Modeled Emissions Through Comparison to Observed BVOC Concentrations in a Southeastern US Forest
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1715,https://doi.org/10.5194/egusphere-2024-1715, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Extraction, purification, and clumped isotope analysis of methane (Δ13CDH3 and Δ12CD2H2) from sources and the atmosphere
Malavika Sivan, Thomas Röckmann, Carina van der Veen, and Maria Elena Popa
Atmos. Meas. Tech., 17, 2687–2705, https://doi.org/10.5194/amt-17-2687-2024,https://doi.org/10.5194/amt-17-2687-2024, 2024
Short summary
Response of protonated, adduct, and fragmented ions in Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS)
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024,https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Characterization of the new BATCH Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products
Finja Löher, Esther Borrás, Amalia Muñoz, and Anke Christine Nölscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-531,https://doi.org/10.5194/egusphere-2024-531, 2024
Short summary
Absorption of volatile organic compounds (VOCs) by polymer tubing: implications for indoor air and use as a simple gas-phase volatility separation technique
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024,https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
A flexible device to produce a gas stream with a precisely controlled water vapour mixing ratio and isotope composition based on microdrop dispensing technology
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023,https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary

Cited articles

Alentiev, A. Y., Yampolskii, Y. P., Shantarovich, V., Nemser, S., and Plate, N.: High transport parameters and free volume of perfluorodioxole copolymers, J. Membrane Sci., 126, 123–132, 1997. a, b
Alentiev, A. Y., Shantarovich, V., Merkel, T., Bondar, V., Freeman, B., and Yampolskii, Y. P.: Gas and vapor sorption, permeation, and diffusion in glassy amorphous Teflon AF1600, Macromolecules, 35, 9513–9522, 2002. a, b, c, d, e, f, g, h
Bourtsoukidis, E., Helleis, F., Tomsche, L., Fischer, H., Hofmann, R., Lelieveld, J., and Williams, J.: An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow, Atmos. Meas. Tech., 10, 5089–5105, https://doi.org/10.5194/amt-10-5089-2017, 2017. a
Demeestere, K., Dewulf, J., De Witte, B., and Van Langenhove, H.: Sample preparation for the analysis of volatile organic compounds in air and water matrices, J. Chromatogr. A, 1153, 130–144, 2007. a
Deming, B. L., Pagonis, D., Liu, X., Day, D. A., Talukdar, R., Krechmer, J. E., de Gouw, J. A., Jimenez, J. L., and Ziemann, P. J.: Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions, Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, 2019. a
Download
Short summary
Measuring volatile organic compounds (VOCs) in the atmosphere is crucial for understanding air quality and environmental impact. Since these compounds are present in low concentrations, preconcentration of samples is often necessary for accurate detection. To address this issue, we have developed a novel inlet that uses selective permeation to concentrate organic gases in small sample flows. This device offers a promising approach for accurately detecting low levels of VOCs in the atmosphere.