Articles | Volume 16, issue 2
https://doi.org/10.5194/amt-16-563-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-563-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimates of the spatially complete, observational-data-driven planetary boundary layer height over the contiguous United States
Zolal Ayazpour
Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
Shiqi Tao
Department of Earth and Environmental Sciences, Boston University, Boston, MA, USA
now at: Department of Geography, Clark University, Worcester, MA, USA
Department of Earth and Environmental Sciences, Boston University, Boston, MA, USA
Amy Jo Scarino
NASA Langley Research Center, Hampton, VA, USA
Ralph E. Kuehn
Space Sciences Engineering Center, University of Wisconsin–Madison, Madison, WI, USA
Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
Related authors
Jin Liao, Glenn M. Wolfe, Alexander E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo González Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech., 18, 1–16, https://doi.org/10.5194/amt-18-1-2025, https://doi.org/10.5194/amt-18-1-2025, 2025
Short summary
Short summary
Validation of satellite HCHO over the remote marine regions is relatively low, and modeled HCHO in these regions is usually added as a global satellite HCHO background. This paper intercompares three satellite HCHO retrievals and validates them against in situ observations from the NASA ATom mission. All retrievals are correlated with ATom-integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. A persistent low bias is found in all retrievals at high latitudes.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Huiqun Wang, Gonzalo González Abad, Chris Chan Miller, Hyeong-Ahn Kwon, Caroline R. Nowlan, Zolal Ayazpour, Heesung Chong, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Kang Sun, Robert Spurr, and Robert J. Hargreaves
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-66, https://doi.org/10.5194/amt-2023-66, 2023
Preprint withdrawn
Short summary
Short summary
A pipeline for retrieving Total Column Water Vapor from satellite blue spectra is developed. New constraints are considered. Water-leaving radiance is important over the oceans. Results agree with reference datasets well under clear conditions. Due to high sensitivity to clouds, strict data filtering criteria are required. All-sky retrievals can be corrected using machine learning. GPS stations’ representation errors follow a power law relationship with grid resolutions.
Jeffrey S. Reid, Robert E. Holz, Chris A. Hostetler, Richard A. Ferrare, Juli I. Rubin, Elizabeth J. Thompson, Susan C. van den Heever, Corey G. Amiot, Sharon P. Burton, Joshua P. DiGangi, Glenn S. Diskin, Joshua H. Cossuth, Daniel P. Eleuterio, Edwin W. Eloranta, Ralph Kuehn, Willem J. Marais, Hal B. Maring, Armin Sorooshian, Kenneth L. Thornhill, Charles R. Trepte, Jian Wang, Peng Xian, and Luke D. Ziemba
EGUsphere, https://doi.org/10.5194/egusphere-2025-2605, https://doi.org/10.5194/egusphere-2025-2605, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We document air and ship born measurements of the vertical distribution of pollution and biomass burning aerosol particles transported within the Maritime Continent’s monsoonal flows for 1000’s of kilometers, and yet still exhibit intricate patterns around clouds near the ocean’s surface. Findings demonstrate that, while aerosol transport occurs near the surface, there is heterogeneity in particle extinction that must be considered for both in situ observations and satellite retrievals.
Meloë S. F. Kacenelenbogen, Ralph Kuehn, Nandana Amarasinghe, Kerry Meyer, Edward Nowottnick, Mark Vaughan, Hong Chen, Sebastian Schmidt, Richard Ferrare, John Hair, Robert Levy, Hongbin Yu, Paquita Zuidema, Robert Holz, and Willem Marais
EGUsphere, https://doi.org/10.5194/egusphere-2025-1403, https://doi.org/10.5194/egusphere-2025-1403, 2025
Short summary
Short summary
Aerosols perturb the radiation balance of the Earth-atmosphere system. To reduce the uncertainty in quantifying present-day climate change, we combine two satellite sensors and a model to assess the aerosol effects on radiation in all-sky conditions. Satellite-based and coincident aircraft measurements of aerosol radiative effects agree well over the Southeast Atlantic. This constitutes a crucial first evaluation before we apply our method to more years and regions of the world.
Zitong Li, Kang Sun, Kaiyu Guan, Sheng Wang, Bin Peng, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Karen Cady-Pereira, Mark W. Shephard, Mark Zondlo, and Daniel Moore
EGUsphere, https://doi.org/10.5194/egusphere-2025-725, https://doi.org/10.5194/egusphere-2025-725, 2025
Short summary
Short summary
We estimate ammonia fluxes over the contiguous U.S. from 2008 to 2022 using a directional derivative approach applied to satellite observations from IASI and CrIS. Satellite-based flux estimates reveal that ammonia emissions deposit in nearby vegetation, with pronounced seasonal and spatial variability driven by agricultural activities, underscoring the need for improved monitoring and management strategies.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Jin Liao, Glenn M. Wolfe, Alexander E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo González Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech., 18, 1–16, https://doi.org/10.5194/amt-18-1-2025, https://doi.org/10.5194/amt-18-1-2025, 2025
Short summary
Short summary
Validation of satellite HCHO over the remote marine regions is relatively low, and modeled HCHO in these regions is usually added as a global satellite HCHO background. This paper intercompares three satellite HCHO retrievals and validates them against in situ observations from the NASA ATom mission. All retrievals are correlated with ATom-integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. A persistent low bias is found in all retrievals at high latitudes.
Christopher Chan Miller, Sébastien Roche, Jonas S. Wilzewski, Xiong Liu, Kelly Chance, Amir H. Souri, Eamon Conway, Bingkun Luo, Jenna Samra, Jacob Hawthorne, Kang Sun, Carly Staebell, Apisada Chulakadabba, Maryann Sargent, Joshua S. Benmergui, Jonathan E. Franklin, Bruce C. Daube, Yang Li, Joshua L. Laughner, Bianca C. Baier, Ritesh Gautam, Mark Omara, and Steven C. Wofsy
Atmos. Meas. Tech., 17, 5429–5454, https://doi.org/10.5194/amt-17-5429-2024, https://doi.org/10.5194/amt-17-5429-2024, 2024
Short summary
Short summary
MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions.
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Short summary
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Karen E. Cady-Pereira, Xuehui Guo, Rui Wang, April B. Leytem, Chase Calkins, Elizabeth Berry, Kang Sun, Markus Müller, Armin Wisthaler, Vivienne H. Payne, Mark W. Shephard, Mark A. Zondlo, and Valentin Kantchev
Atmos. Meas. Tech., 17, 15–36, https://doi.org/10.5194/amt-17-15-2024, https://doi.org/10.5194/amt-17-15-2024, 2024
Short summary
Short summary
Ammonia is a significant precursor of PM2.5 particles and thus contributes to poor air quality in many regions. Furthermore, ammonia concentrations are rising due to the increase of large-scale, intensive agricultural activities. Here we evaluate satellite measurements of ammonia against aircraft and surface network data, and show that there are differences in magnitude, but the satellite data are spatially and temporally well correlated with the in situ data.
Apisada Chulakadabba, Maryann Sargent, Thomas Lauvaux, Joshua S. Benmergui, Jonathan E. Franklin, Christopher Chan Miller, Jonas S. Wilzewski, Sébastien Roche, Eamon Conway, Amir H. Souri, Kang Sun, Bingkun Luo, Jacob Hawthrone, Jenna Samra, Bruce C. Daube, Xiong Liu, Kelly Chance, Yang Li, Ritesh Gautam, Mark Omara, Jeff S. Rutherford, Evan D. Sherwin, Adam Brandt, and Steven C. Wofsy
Atmos. Meas. Tech., 16, 5771–5785, https://doi.org/10.5194/amt-16-5771-2023, https://doi.org/10.5194/amt-16-5771-2023, 2023
Short summary
Short summary
We show that MethaneAIR, a precursor to the MethaneSAT satellite, demonstrates accurate point source quantification during controlled release experiments and regional observations in 2021 and 2022. Results from our two independent quantification methods suggest the accuracy of our sensor and algorithms is better than 25 % for sources emitting 200 kg h−1 or more. Insights from these measurements help establish the capabilities of MethaneSAT and MethaneAIR.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Chantelle R. Lonsdale and Kang Sun
Atmos. Chem. Phys., 23, 8727–8748, https://doi.org/10.5194/acp-23-8727-2023, https://doi.org/10.5194/acp-23-8727-2023, 2023
Short summary
Short summary
The COVID-19 pandemic, which was caused by the SARS-CoV-2 virus, emerged in 2019, and its still evolving variants have resulted in unprecedented shifts in human activities and anthropogenic emissions into the Earth's atmosphere. We present monthly nitrogen oxide emissions over three major continents from May 2018 to January 2023 to capture variations before and after the COVID-19 pandemic. We focus on a diverse collection of 54 cities to quantify the post-COVID-19 perturbations.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Huiqun Wang, Gonzalo González Abad, Chris Chan Miller, Hyeong-Ahn Kwon, Caroline R. Nowlan, Zolal Ayazpour, Heesung Chong, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Kang Sun, Robert Spurr, and Robert J. Hargreaves
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-66, https://doi.org/10.5194/amt-2023-66, 2023
Preprint withdrawn
Short summary
Short summary
A pipeline for retrieving Total Column Water Vapor from satellite blue spectra is developed. New constraints are considered. Water-leaving radiance is important over the oceans. Results agree with reference datasets well under clear conditions. Due to high sensitivity to clouds, strict data filtering criteria are required. All-sky retrievals can be corrected using machine learning. GPS stations’ representation errors follow a power law relationship with grid resolutions.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022, https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Short summary
The evolution of aerosol in biomass burning smoke plumes that travel over marine clouds off the Atlantic coast of central Africa was studied using measurements made by a lidar deployed on a high-altitude aircraft. The main finding was that the physical properties of aerosol do not change appreciably once the plume has left land and travels over the ocean over a timescale of 1 to 2 d. Almost all particles in the plume are of radius less than 1 micrometer and spherical in shape.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech., 15, 3721–3745, https://doi.org/10.5194/amt-15-3721-2022, https://doi.org/10.5194/amt-15-3721-2022, 2022
Short summary
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help in the satellite remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Amir H. Souri, Kelly Chance, Kang Sun, Xiong Liu, and Matthew S. Johnson
Atmos. Meas. Tech., 15, 41–59, https://doi.org/10.5194/amt-15-41-2022, https://doi.org/10.5194/amt-15-41-2022, 2022
Short summary
Short summary
The central component of satellite and model validation is pointwise measurements. A point is an element of space, whereas satellite (model) pixels represent an averaged area. These two datasets are inherently different. We leveraged some geostatistical tools to transform discrete points to gridded data with quantified uncertainty, comparable to satellite footprint (and response functions). This in part alleviated some complications concerning point–pixel comparisons.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu
Earth Syst. Sci. Data, 13, 4799–4817, https://doi.org/10.5194/essd-13-4799-2021, https://doi.org/10.5194/essd-13-4799-2021, 2021
Short summary
Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.
Kang Sun, Lingbo Li, Shruti Jagini, and Dan Li
Atmos. Chem. Phys., 21, 13311–13332, https://doi.org/10.5194/acp-21-13311-2021, https://doi.org/10.5194/acp-21-13311-2021, 2021
Short summary
Short summary
We bridge the gap between satellite column observations and emissions by accounting for the dynamic lifetime of pollutants due to wind dispersion and the chemical lifetime due to chemical reactions. Applying it to the Po Valley air basin, we derive the monthly emissions of nitrogen oxides using satellite nitrogen dioxide observations. We further quantify the COVID-19-driven decline of emissions and estimate a 22 % decrease in nitrogen oxide emissions due to the pandemic in 2020.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753, https://doi.org/10.5194/amt-14-3737-2021, https://doi.org/10.5194/amt-14-3737-2021, 2021
Short summary
Short summary
Given the high global warming potential of CH4, the identification and subsequent reduction of anthropogenic CH4 emissions presents a significant opportunity for climate change mitigation. Satellites are an integral piece of this puzzle, providing data to quantify emissions at a variety of spatial scales. This work presents the spectral calibration of MethaneAIR, the airborne instrument used as a test bed for the forthcoming MethaneSAT satellite.
Cited articles
Angevine, W. M., Eddington, L., Durkee, K., Fairall, C., Bianco, L., and
Brioude, J.: Meteorological model evaluation for CalNex 2010, Mon. Weather
Rev., 140, 3885–3906, 2012. a
Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., DeSmedt, I., Dirksen, R., and Eskes, H. J.: Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities, Atmos. Chem. Phys., 9, 3867–3879, https://doi.org/10.5194/acp-9-3867-2009, 2009. a
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in:
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 13–17 August 2016,
San Francisco, CA, https://doi.org/10.1145/2939672, 785–794, 2016. a
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), Tech. rep., USGS, https://doi.org/10.3133/ofr20111073, 2011. a
Davis, K. J., Gamage, N., Hagelberg, C. R., Kiemle, C., Lenschow, D. H., and
Sullivan, P. P.: An Objective Method for Deriving Atmospheric Structure from
Airborne Lidar Observations, J. Atmos. Ocean. Technol.,
17, 1455–1468, https://doi.org/10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2, 2000. a
ECMWF: Part IV: Physical processes, in: IFS Documentation CY43R3, IFS
Documentation, ECMWF, https://www.ecmwf.int/node/17736 (last access: 15 July 2022), 2017. a
ECMWF Support Portal: ERA5 hourly data on single levels from 1959 to present, ECMWF [data set], https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (last access: 15 July 2022), 2018. a
ECMWF: ERA5 hourly data on single levels from 1979 to present,
https://doi.org/10.24381/cds.adbb2d47, 2020. a
Friedman, J. H.: Greedy function approximation: a gradient boosting machine,
Annals of statistics, ISSN 00905364, 1189–1232, 2001. a
Garratt, J. R.: The atmospheric boundary layer, Earth-Sci. Rev., 37,
89–134, 1994. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, 2017. a
Gerbig, C., Körner, S., and Lin, J. C.: Vertical mixing in atmospheric tracer transport models: error characterization and propagation, Atmos. Chem. Phys., 8, 591–602, https://doi.org/10.5194/acp-8-591-2008, 2008. a
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/VJAFPLI1CSIV, 2015. a
GMAO: MERRA-2 tavg1_2d_slv_Nx:
2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics
V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information
Services Center (GES DISC), https://doi.org/10.5067/VJAFPLI1CSIV, 2015. a
Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., Bian, L., and Zhai, P.: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data, Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016. a
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A.,
Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E.: Airborne high
spectral resolution lidar for profiling aerosol optical properties, Appl.
Opt., 47, 6734–6752, 2008. a
Hegarty, J. D., Lewis, J., McGrath-Spangler, E. L., Henderson, J., Scarino,
A. J., DeCola, P., Ferrare, R., Hicks, M., Adams-Selin, R. D., and Welton,
E. J.: Analysis of the Planetary Boundary Layer Height during DISCOVER-AQ
Baltimore–Washington, D.C., with Lidar and High-Resolution WRF Modeling,
J. Appl. Meteorol. Climatol., 57, 2679–2696,
https://doi.org/10.1175/JAMC-D-18-0014.1, 2018. a, b, c, d
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti,
G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,
J.-N.: The ERA5 global reanalysis, Q. J. Roy.
Meteorol. Soc., 146, 730, https://doi.org/10.1002/qj.3803, 2020. a
Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C.,
Christensen, O. B., Formayer, H., Orlowsky, B., and Stepanek, P.:
Observational evidence for soil-moisture impact on hot extremes in
southeastern Europe, Nat. Geosci., 4, 17–21, 2011. a
Hu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., Sulprizio,
M. P., and Yantosca, R. M.: Global budget of tropospheric ozone: Evaluating
recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde
observations, Atmos. Environ., 167, 323–334, 2017. a
Huang, C., Sun, K., Hu, J., Xue, T., Xu, H., and Wang, M.: Estimating
2013–2019 NO2 exposure with high spatiotemporal resolution in China using
an ensemble model, Environ. Pollut., 292, 118285,
https://doi.org/10.1016/j.envpol.2021.118285, 2022. a
Jiang, R. and Zhao, K.: Using machine learning method on calculation of
boundary layer height, Neural Comput. Appl., 34, 2597–2609,
2022. a
Jordan, N. S., Hoff, R. M., and Bacmeister, J. T.: Validation of Goddard Earth
Observing System-version 5 MERRA planetary boundary layer heights using
CALIPSO, J. Geophys. Res.-Atmos., 115, D24,
https://doi.org/10.1029/2009JD013777, 2010. a
Karl, T. and Koss, W. J.: Regional and national monthly, seasonal, and annual
temperature weighted by area, 1895–1983,
https://repository.library.noaa.gov/view/noaa/10238 (last access: 15 July 2022), 1984. a
Keller, C. A., Evans, M. J., Knowland, K. E., Hasenkopf, C. A., Modekurty, S., Lucchesi, R. A., Oda, T., Franca, B. B., Mandarino, F. C., Díaz Suárez, M. V., Ryan, R. G., Fakes, L. H., and Pawson, S.: Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone, Atmos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-21-3555-2021, 2021. a
Laughner, J. L., Zhu, Q., and Cohen, R. C.: Evaluation of version 3.0B of the BEHR OMI NO2 product, Atmos. Meas. Tech., 12, 129–146, https://doi.org/10.5194/amt-12-129-2019, 2019. a, b
Lee, T. R. and De Wekker, S. F. J.: Estimating Daytime Planetary Boundary
Layer Heights over a Valley from Rawinsonde Observations at a Nearby Airport:
An Application to the Page Valley in Virginia, United States, J.
Appl. Meteorol. Climatol., 55, 791–809,
https://doi.org/10.1175/JAMC-D-15-0300.1, 2016. a
Li, D.: AMDAR_BL_PBLH_DATASET (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.3934378, 2020. a
Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, R. M., Sheng, J., Andrews, A., Parker, R. J., Boesch, H., Bloom, A. A., and Ma, S.: Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations, Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, 2021. a, b
Lucchesi, R.: File Specification for GEOS-5 FP (Forward Processing),
https://gmao.gsfc.nasa.gov/GMAO_products/documents/GEOS_5_FP_File_Specification_ON4v1_2.pdf (last access: 15 July 2022),
2018. a
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model
predictions, Advances in neural information processing systems, 30, https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (last access: 15 July 2022), 2017. a
Masoudvaziri, N., Ganguly, P., Mukherjee, S., and Sun, K.: Impact of
geophysical and anthropogenic factors on wildfire size: a spatiotemporal
data-driven risk assessment approach using statistical learning, Stoch.
Environ. Res. Risk Assess., 36, 1103–1129, https://doi.org/10.1007/s00477-021-02087-w,
2021. a
McGrath-Spangler, E. L. and Denning, A. S.: Estimates of North American
summertime planetary boundary layer depths derived from space-borne lidar,
J. Geophys. Res.-Atmos., 117, D15, https://doi.org/10.1029/2012JD017615, 2012. a, b, c
McGrath-Spangler, E. L. and Denning, A. S.: Global seasonal variations of
midday planetary boundary layer depth from CALIPSO space-borne LIDAR, J. Geophys. Res.-Atmos., 118, 1226–1233, https://doi.org/10.1002/jgrd.50198, 2013. a
McGrath-Spangler, E. L. and Molod, A.: Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions, Atmos. Chem. Phys., 14, 6717–6727, https://doi.org/10.5194/acp-14-6717-2014, 2014. a
McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R.,
and Stephens, B. B.: Assessment of ground-based atmospheric observations for
verification of greenhouse gas emissions from an urban region., P. Natl. Acad. Sci. USA, 109,
8423–8428, https://doi.org/10.1073/pnas.1116645109, 2012. a
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki,
W., Jović, D., Woollen, J., Rogers, E., and Berbery, E. H.: North
American regional reanalysis, B. Am. Meteorol.
Soc., 87, 343–360, 2006. a
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K., Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A., Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J., Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., and Xu, J.: A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, 2015. a
Moninger, W. R., Mamrosh, R. D., and Pauley, P. M.: Automated meteorological
reports from commercial aircraft, B. Am. Meteorol.
Soc., 84, 203–216, 2003. a
Murray, L. T., Leibensperger, E. M., Orbe, C., Mickley, L. J., and Sulprizio, M.: GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios, Geosci. Model Dev., 14, 5789–5823, https://doi.org/10.5194/gmd-14-5789-2021, 2021. a, b
NASA: Distance to the Nearest Coast, NASA,
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ (last access: 15 July 2022), 2022. a
NASA: SEAC4RS – Studies of Emissions and Atmospheric Composition,
Clouds and Climate Coupling by Regional Surveys, NASA [data set], https://doi.org/10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud, 2023. a
NASA Langley Research Center's (LaRC) ASDC DAAC: Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality, NASA [data set], https://doi.org/10.5067/Aircraft/DISCOVER-AQ/Aerosol-TraceGas, 2023. a
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: updated monthly, NCEP North American Regional Reanalysis (NARR), Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, NOAA [data set], https://rda.ucar.edu/datasets/ds608.0/ (last access: 15 July 2022), 2005. a
NCEP: NCEP North American Regional Reanalysis (NARR), NCEP,
https://rda.ucar.edu/datasets/ds608.0/ (last access: 15 July 2022), 2005. a
NOAA: Index of /madisPublic1/data/archive, NOAA [data set], https://madis-data.cprk.ncep.noaa.gov/madisPublic1/data/archive/ (last access: 15 July 2022), 2023. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Santanello, J. A., Peters-Lidard, C. D., Kennedy, A., and Kumar, S. V.:
Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet
extremes in the US southern Great Plains, Jo. Hydrometeorol., 14,
3–24, 2013. a
Santanello, J. A., Roundy, J., and Dirmeyer, P. A.: Quantifying the
land–atmosphere coupling behavior in modern reanalysis products over the US
Southern Great Plains, J. Climate, 28, 5813–5829, 2015. a
Santanello, J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B., Berg, A., Ek, M., Gentine, P., Guillod, B. P., Van Heerwaarden, C., Roundy J., and Wulfmeyer V.: Land–atmosphere interactions: The LoCo perspective, B.
Am. Meteorol. Soc., 99, 1253–1272, 2018. a
Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Berg, L. K., Lefer, B., Haman, C., Hair, J. W., Rogers, R. R., Butler, C., Cook, A. L., and Harper, D. B.: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES, Atmos. Chem. Phys., 14, 5547–5560, https://doi.org/10.5194/acp-14-5547-2014, 2014. a
Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and
Medeiros, B.: Climatology of the planetary boundary layer over the
continental United States and Europe, J. Geophys. Res.-Atmos., 117, D17, https://doi.org/10.1029/2012JD018143, 2012. a, b
SSEC: CALIPSO, SSEC [data set], https://download.ssec.wisc.edu/files/calipso/, last access: 15 July 2022, 2023. a
Stensrud, D. J.: Parameterization schemes: keys to understanding numerical
weather prediction models, Cambridge University Press, 449 pp., https://doi.org/10.1017/CBO9780511812590, 2009. a
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic,
666 pp., https://doi.org/10.1007/978-94-009-3027-8, 1988. a
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018. a, b
Sun, K., Cady-Pereira, K., Miller, D. J., Tao, L., Zondlo, M., Nowak, J.,
Neuman, J. A., Mikoviny, T., Muller, M., Wisthaler, A., Scarino, A. J., and
Hostetler, C.: Validation of TES ammonia observations at the single pixel
scale in the San Joaquin Valley during DISCOVER-AQ, J. Geophys.
Res.-Atmos., 120, 5140–5154, https://doi.org/10.1002/2014JD022846, 2015. a
Sun, K., Zhu, L., Cady-Pereira, K., Chan Miller, C., Chance, K., Clarisse, L., Coheur, P.-F., González Abad, G., Huang, G., Liu, X., Van Damme, M., Yang, K., and Zondlo, M.: A physics-based approach to oversample multi-satellite, multispecies observations to a common grid, Atmos. Meas. Tech., 11, 6679–6701, https://doi.org/10.5194/amt-11-6679-2018, 2018. a
Zhang, Y., Wang, Y., Chen, G., Smeltzer, C., Crawford, J., Olson, J., Szykman,
J., Weinheimer, A. J., Knapp, D. J., and Montzka, D. D.: Large vertical
gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis
of DISCOVER-AQ 2011 observations, J. Geophys. Res.-Atmos., 121, 1922–1934, 2016. a
Zhang, Y., Sun, K., Gao, Z., Pan, Z., Shook, M. A., and Li, D.: Diurnal
Climatology of Planetary Boundary Layer Height Over the Contiguous United
States Derived From AMDAR and Reanalysis Data, J. Geophys.
Res.-Atmos., 125, e2020JD032803,
https://doi.org/10.1029/2020JD032803, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P., and Wolfe, G. M.: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US, Atmos. Chem. Phys., 16, 13477–13490, https://doi.org/10.5194/acp-16-13477-2016, 2016. a, b
Zoogman, P., Liu, X., Suleiman, R., Pennington, W., Flittner, D., Al-Saadi, J.,
Hilton, B., Nicks, D., Newchurch, M., Carr, J., Janz, S., Andraschko, M.,
Arola, A., Baker, B., Canova, B., Chan Miller, C., Cohen, R., Davis, J.,
Dussault, M., Edwards, D., Fishman, J., Ghulam, A., González Abad, G.,
Grutter, M., Herman, J., Houck, J., Jacob, D., Joiner, J., Kerridge, B., Kim,
J., Krotkov, N., Lamsal, L., Li, C., Lindfors, A., Martin, R., McElroy, C.,
McLinden, C., Natraj, V., Neil, D., Nowlan, C., O'Sullivan, E., Palmer, P.,
Pierce, R., Pippin, M., Saiz-Lopez, A., Spurr, R., Szykman, J., Torres, O.,
Veefkind, J., Veihelmann, B., Wang, H., Wang, J., and Chance, K.:
Tropospheric emissions: Monitoring of pollution (TEMPO), J.
Quant. Spectrosc. Ra. Transf., 186, 17–39,
https://doi.org/10.1016/j.jqsrt.2016.05.008, 2017. a, b
Short summary
Accurate knowledge of the planetary boundary layer height (PBLH) is essential to study air pollution. However, PBLH observations are sparse in space and time, and PBLHs used in atmospheric models are often inaccurate. Using PBLH observations from the Aircraft Meteorological DAta Relay (AMDAR), we present a machine learning framework to produce a spatially complete PBLH product over the contiguous US that shows a better agreement with reference PBLH observations than commonly used PBLH products.
Accurate knowledge of the planetary boundary layer height (PBLH) is essential to study air...