Articles | Volume 17, issue 10
https://doi.org/10.5194/amt-17-3103-2024
https://doi.org/10.5194/amt-17-3103-2024
Research article
 | 
23 May 2024
Research article |  | 23 May 2024

Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs

Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva

Related authors

Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024,https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021,https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary
A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements
Anand K. Ramanathan, Hai M. Nguyen, Xiaoli Sun, Jianping Mao, James B. Abshire, Jonathan M. Hobbs, and Amy J. Braverman
Atmos. Meas. Tech., 11, 4909–4928, https://doi.org/10.5194/amt-11-4909-2018,https://doi.org/10.5194/amt-11-4909-2018, 2018
Short summary
A method for colocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON
H. Nguyen, G. Osterman, D. Wunch, C. O'Dell, L. Mandrake, P. Wennberg, B. Fisher, and R. Castano
Atmos. Meas. Tech., 7, 2631–2644, https://doi.org/10.5194/amt-7-2631-2014,https://doi.org/10.5194/amt-7-2631-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Application of Doppler sodar in short-term forecasting of PM10 concentration in the air in Krakow (Poland)
Ewa Agnieszka Krajny, Leszek Ośródka, and Marek Jan Wojtylak
Atmos. Meas. Tech., 17, 2451–2464, https://doi.org/10.5194/amt-17-2451-2024,https://doi.org/10.5194/amt-17-2451-2024, 2024
Short summary
Radiative closure tests of collocated hyperspectral microwave and infrared radiometers
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 17, 2219–2233, https://doi.org/10.5194/amt-17-2219-2024,https://doi.org/10.5194/amt-17-2219-2024, 2024
Short summary
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024,https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary
Verification of parameterizations for clear sky downwelling longwave irradiance in the Arctic
Giandomenico Pace, Alcide di Sarra, Filippo Cali Quaglia, Virginia Ciardini, Tatiana Di Iorio, Antonio Iaccarino, Daniela Meloni, Giovanni Muscari, and Claudio Scarchilli
Atmos. Meas. Tech., 17, 1617–1632, https://doi.org/10.5194/amt-17-1617-2024,https://doi.org/10.5194/amt-17-1617-2024, 2024
Short summary

Cited articles

Bies, R. R., Muldoon, M. F., Pollock, B. G., Manuck, S., Smith, G., and Sale, M. E.: A genetic algorithm-based, hybrid machine learning approach to model selection, J. Pharmacokinet. Phar., 33, 195–221, 2006. a
Blanchet, F. G., Legendre, P., and Borcard, D.: Forward selection of explanatory variables, Ecology, 89, 2623–2632, 2008.  a
Bormann, N. and Thépaut, J.-N.: Impact of MODIS polar winds in ECMWF's 4DVAR data assimilation system, Mon. Weather Rev., 132, 929–940, 2004. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b, c, d
Chase, R. J., Harrison, D. R., Burke, A., Lackmann, G. M., and McGovern, A.: A machine learning tutorial for operational meteorology. Part I: Traditional machine learning, Weather Forecast., 37, 1509–1529, 2022. a, b, c
Download
Short summary
Accurate global wind estimation is crucial for weather prediction and environmental modeling. Our study investigates a method to refine atmospheric motion vectors (AMVs) by comparing them with high-precision active-sensor winds. Leveraging supervised learning, we discovered that using high-precision active-sensor data can significantly reduce biases in passive-sensor winds in addition to providing estimates of the wind errors, thereby improving their reliability.