Articles | Volume 17, issue 10
https://doi.org/10.5194/amt-17-3103-2024
https://doi.org/10.5194/amt-17-3103-2024
Research article
 | 
23 May 2024
Research article |  | 23 May 2024

Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs

Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva

Related authors

Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024,https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021,https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary

Cited articles

Bies, R. R., Muldoon, M. F., Pollock, B. G., Manuck, S., Smith, G., and Sale, M. E.: A genetic algorithm-based, hybrid machine learning approach to model selection, J. Pharmacokinet. Phar., 33, 195–221, 2006. a
Blanchet, F. G., Legendre, P., and Borcard, D.: Forward selection of explanatory variables, Ecology, 89, 2623–2632, 2008.  a
Bormann, N. and Thépaut, J.-N.: Impact of MODIS polar winds in ECMWF's 4DVAR data assimilation system, Mon. Weather Rev., 132, 929–940, 2004. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b, c, d
Chase, R. J., Harrison, D. R., Burke, A., Lackmann, G. M., and McGovern, A.: A machine learning tutorial for operational meteorology. Part I: Traditional machine learning, Weather Forecast., 37, 1509–1529, 2022. a, b, c
Download
Short summary
Accurate global wind estimation is crucial for weather prediction and environmental modeling. Our study investigates a method to refine atmospheric motion vectors (AMVs) by comparing them with high-precision active-sensor winds. Leveraging supervised learning, we discovered that using high-precision active-sensor data can significantly reduce biases in passive-sensor winds in addition to providing estimates of the wind errors, thereby improving their reliability.
Share